若干电解质在甲醇和乙醇饱和水溶液中的电导率研究

顾鸿语 王遵尧

李 春

(盐城工学院化学工程系,盐城,224003)

(南京大学,南京,210093)

摘 要 报导了四种不带结晶水的无机盐在甲醇、乙醇饱和溶液中的电导率与 H_2O 含量的关系,特别是 NaCl 在乙醇— H_2O 饱和溶液中的电导率与温度之间存在着的线性关系,同时测定了 NaCl 在不同比例的甲醇—乙醇— H_2O 饱和溶液中的电导率,发现其数值受 H_2O 含量的影响大于甲醇的影响。

关键词 电导率 甲醇 乙醇 饱和溶液 分类号 O646.1

电解质在非水溶剂中的导电行为是溶液电化学的重要研究内容,人们对此的研究已从纯溶液逐渐转向混合溶剂。如国内研究较多的是测定电解质在有机溶剂中的摩尔电导[1,2,3]。

对有机溶剂而言,其纯溶液的电导率极低。随着水含量的增加,由于水的电离度较小,其电导率变化很小,但是加入强电解质后,有机溶剂的电导率明显增加。特别是随着水的含量增加,电导率也相应增加。为了揭示对电解质在有机溶剂中电导率的影响,我们选取了不带结晶水的NaCl、KCl、NH4NO3和(NH4)2SO4作为电解质,分别测定它们在甲醇—H2O、乙醇—H2O(包括纯溶剂)中饱和溶液的电导率,并重点研究了温度对NaCl在乙醇—H2O中电导率的影响,以及NaCl在甲醇—乙醇—H2O混合溶剂中饱和溶液的电导,通过对结果的分析,获得了有关溶质在两种溶剂中饱和溶液的电导及其温度影响,特别是水的存在对电导率的影响规律。

1. 实验方法

1.1 仪器与药品

电导率的测定采用 DDS-12A 型数字式电导率仪,测量相对误差小于 5×10^{-4} ,216 型电导极经 KCl 标准溶液标定,电导池常数为 0.7638。NaCl、KCl、NH₄NO₃、(NH₄)₂SO₄ 皆为分析纯试剂,参照文献[4]提纯;甲醇乙醇都是分析醇试剂,分别加入镁粉,经加热回流除去水份蒸出相应的馏份,水的含量都小于 0.01%, $K_{MeOH}=5\times10^{-5}$, $K_{ErOH}=4\times10^{-5}$;用石英蒸馏器蒸出的二次蒸馏水的电导率为 8×10^{-6} s·m⁻¹。

1.2 测试方法

实验采用恒温全封闭系统,控温精度为 0.05K,对于要测定的溶液控制溶液在 25ml 左右,加入 2.00g 电解质后在磁力搅拌器上充分搅拌,电导率保持恒定,即认为是达到饱和,测定其电导率。

[◆] 收稿日期:1996-08-30

2 实验内容

2.1 NaCl、KCl、NH4NO3、(NH4)2SO4 在甲醇-H2O 和乙醇-H2O 中饱和溶液的电导

在含水量不同的甲醇 $-H_2O$ 和乙醇 $-H_2O$ 中分别加入 NaCl、KCl、NH₄NO₃、(NH₄)₂SO₄ 等不含结晶水的电解质,测得它们的饱和溶液的电导率见表 $1(NH_4NO_3$ 在甲醇中溶解度较大,其饱和溶液的电导率超出电导仪的量程)。

	甲醇一	H₂O		乙醇−H₂O					
H ₂ O%(V/V)) (NH₄)₂SO₄	KCl	NaCl	(NH ₄) ₂ SO ₄	KCl	NaCl	NH,NO ₃		
0.00	13.62	184.6	593. 8	0.0784	5. 584	16. 98	346. 2		
0.20	13.84	184.8	593.9	0.0856	5.603	17.74	355. 4		
0.40	14.07	185.0	594.0	0.1001	5.621	18. 56	364.9		
0.55	14. 24	185.2	594.2	0.1176	5.640	19.32	373. 3		
0.70	14.45	185.4	594.5	0.1304	5.667	20.18	385. 1		
0.90	14.63	185.5	594.8	0.1368	5.693	21. 28	395.9		
1.20	14.96	185.7	595.1	0.1504	5.712	22. 32	410.2		
2.00	15.64	188.4	595.5	0.2004	5.766	25.60	451.8		
. 4. 60	20.64	199. 6	636.8	0.3264	5.964	36.83	_		
8.80	26. 22	256.0	690.0	1.155	6.605	64.85	_		
14.10	41.43	332.0	764.1	3.449	7.345	123.6	-		
17.50	64. 67	445.6	1176	9. 438	11.26	203. 2	_		

表 1 283.15K 不同电解质在甲醇-H₂O 和乙醇 H₂O 中饱和溶液的电导率(10⁻³s·m⁻¹)

2.2 温度对 NaCl 在乙醇-H₂O 中电导率的影响

将 2.00gNaCl 加入到含水量分别为 0.00%,1.00%,10.00%的乙醇中,升温到 308.15K 搅拌使其饱和,不断降温,测定不同温度下的电导率,见表 2 中(I)。

将 2.00gNaCl 加入到含水量分别为 0.00%,10.00%,10.00%的乙醇中,搅拌使其饱和,在 377.15K 下静置 48 小时后采用倾泌法将上层清液过滤,取滤液测定其在 277.15~305.15K 的电导率,见表 2 中(\mathbb{I})。

将上述两步测定的各组数据作图,见图 1,对有关数据进行处理后,其线性相关系数 r、直线的斜率 a、直线的截距 b 列于表 2 中。线性相关系数 r 都在 $0.9986 \sim 0.9998$ 之间。

乙醇:H₂O	100:0		99	: 1	90:10		
温度(K)	I	I	I	I	I	1	
305. 2	2. 388	2. 245	3. 360	3. 053	19.88	15. 80	
300.2	2. 268	2.154	3.065	2.906	18. 20	14.86	
297.2	2.150	2.054	2. 980	2.750	16. 56	13.83	
293. 2	2.030	1.964	2.778	2.604	14.98	12.79	
289.2	1.912	1.862	2.586	2.464	13.43	11.75	
285.2	1.800	1.766	2.400	2.311	11.84	10.74	
281.2	1.686	1.671	2. 208	2. 169	10.38	9.746	
277.2	1.572	1.576	2.021	2.024	8.722	8. 701	
r	0.9986	0.9998	0.9988	0.9994	0.9989	0.9996	
а	0.02934	0.02408	0.04800	0.03669	0.3968	0.2543	
ь	-6.565	-5.099	-11.29	-8.149	-101.3	-61.77	

表 2 不同温度下 NaCl 在乙醇--H₂O 中的电导率(10⁻²s·m⁻¹)

2.3 NaCl 在甲醇一乙醇—H₂O 三元体系中饱和溶液的电导率

配制不同体积比的甲醇一乙醇混合溶液(控制体积在25.00ml),加入2.00gNaCl后,再加

注: 1,不同温度下饱和溶液的电导率; 1,277.15K 下饱和溶液在不同温度下的电导率。

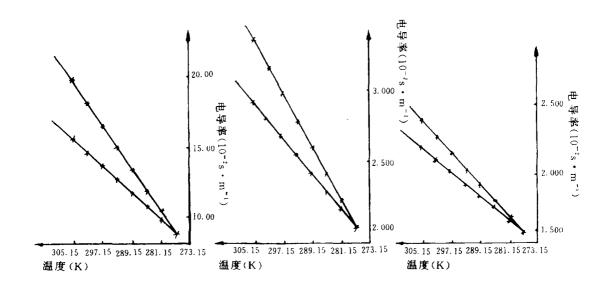


图 1 NaCl 在乙醇-H₂() 中的电导率与温度关系曲线

入不同体积的水,搅拌使其饱和后测定其电导率,见表 3。

表 3 283.15KNaCl 在甲醇一乙醇--H₂O 三元体系中饱和溶液的电导率(10⁻²s·m⁻¹)

H ₂ O	甲醇:乙醇										
%(V/V)	100:0	99:1	90:10	80 : 20	60:40	50:50	40:60	20:80	10:90	1:99	0:100
0.0	1.698	1.764	2.780	4.193	9.603	15.65	20.83	37.21	48.62	59. 24	59.38
0.4	1.856	1.923	2.877	4.235	9.615	15.86	21.79	38.55	49.33	59.70	59.40
0.8	2.018	2.079	2.988	4.276	9.633	16.20	23.10	39.73	50.19	60.11	59.45
1.2	2. 223	2.296	3.097	4. 313	9.648	16.85	24.24	40. 93	51.02	60. 50	59.51
2.0	2.560	2.623	3.362	4.402	9.802	17.62	24.84	43.58	53.11	62.11	59.55
4.6	3.680	3.744	4.468	5.847	12.47	20.04	28.05	47.22	55.42	64.65	63.68
8.8	6.482	6.542	6.805	8.327	16.64	26.39	34.27	53.63	64.00	68.62	69.00
14.1	12.32	12.38	12.84	14.08	24.06	36.48	46.81	68.03	75.20	79.59	76.41
17.5	20.32	20.37	21.63	23. 28	46.27	50.44	65.82	88.04	102.4	115.2	117.6

3 讨论

1、比较 NaCl,KCl,NH₄NO₃,(NH₄)₂SO₄ 在乙醇—H₂O、甲醇—H₂O 中饱和溶液的电导率可见,对同一种盐而言,在含水量相同的前提下,甲醇体系的电导率大于乙醇体系,这主要是由于甲醇的介电常数($\varepsilon^{295.15}$ =32.63)大于乙醇的介电常数($\varepsilon^{295.15}$ =24.30),使得无机盐在甲醇中的溶解度较大。同时,随着水含量的增加,两种溶液的电导率上升很快,这是由于水的含量增加后,饱和溶液的浓度随之增加。这几种盐的饱和溶液的电导率在同样的条件下的大小次序为(NH₄)₂SO₄<KCl<NaCl<NH₄NO₃。

2、NaCl 在乙醇一 H_2O 介质中饱和溶液的电导率与温度之间存在着线性关系: $k=a_1T+b_1$;而在 277. 15K 饱和了的 NaCl 溶液随温度的提高,电导率与温度也存在着线性关系 $k'=a_2T+b_2$;对于含水量相同的乙醇来说, $a_2<a_1$,它们的线性相关系数都在 0. 9986~0. 9998 之间。对于在 277. 15K 饱和了的 NaCl 溶液,随着温度的增加,电导率也增加。根据 Debye—

Huckel—Onsafer 理论,一方面随着温度的升高,体系的粘度降低,电泳阻力下降,粒子的导电能力增强,电导率增加,另一方面体系的介电常数降低,异号离子间的相互吸引增强,粒子的导电能力下降,电导率降低,这二方面综合作用的结果是,随温度的升高,体系中粒子导电能力增强,电导率增强(即电泳力的贡献大于静电相互作用的贡献)。而这两个方程之差: $k''=\Delta aT + \Delta b$,近似地反应了温度对其溶解度的影响而引起的电导率的变化,比如纯的乙醇中这一影响为 k''=0.00526T-1.466。

 $3 \text{ NaCl } \text{在甲醇---Z醇-H}_2\text{O}$ 混合介质中饱和溶液的电导率随着甲醇和水的含量增加而增加,受 H_2O 的影响大于甲醇,前者约为后者的 4 倍。

根据前面的实验结果和讨论可知,对甲醇、乙醇而言,强电解质的饱和溶液的电导率与水的含量有依赖关系。我们还对醋酸、丙酸等其它液态有机物也做了同样的实验,发现都有类似关系。所以这一方法可以应用于检测这些液态有机物中的水份,即在这些有机物中加入无机盐,通过在一定温度下测定其饱和溶液的电导率,即可从电导率数值推算出水的含量。

参考文献

- 1 陆九芳,胡贵春,李以圭. H₂O-C₂H₅OH-MX(NaCl)体系中离子缔合和活度. 物理化学学报. 1992,8(2):162~170
- 2 张宏,刘瑞麟,李芝芬. 二甲酰胺一二氧六环混合溶剂中 KBr. KSCN 及 KCl04 的电导研究. 高等学校化学学报, 1988, 9(4): 378~383
- 3 王风云,张惟权,丁海清等. HeOH-H₂O-NaAc 体系的电导研究. 化学学报. 1993, 51:966 ~972
- 4 P D Dalzell, et al., Purification of Laboratory Chemicals, 2nd., Oxford Pergamon, 1980

《学报》更名启事

根据国家教委和江苏省政府有关文件规定,原盐城工业专科学校和盐城职业大学于1996年8月8日合并成立盐城工学院。为了更好地推动学院教学、科研、生产、管理诸项工作的深入开展和有机结合,促进学术交流,科技进步,我院决定,并报请有关部门批准,将原《盐城工业专科学校学报》更名为《盐城工学院学报》。

更名后的《盐城工学院学报》仍为自然科学类学术性期刊,季刊。

值此学报更名之际,我们热忱地期望各位领导、专家和广大读者象给予《盐城工业专科学校学报》厚爱一样给予《盐城工学院学报》更多的支持、帮助和指导。我们诚挚地欢迎我院广大师生、校友及兄弟院校、工矿企业、科研单位的同仁踊跃投稿。我们深信,在我院党委和院部的关怀和指导下,通过编辑人员的共同努力,一定能够使《盐城工学院学报》在学院的教学、科研中真正发挥出"窗口"、"标志"作用。

《盐城工学院学报》编辑部 1996 年 9 月