关于镁白云石质耐火材料高温相组成计算的改进

王路明

(盐城工学院东校区,盐城,224002)

摘 要 对原始 CaO-MgO-C₂S-C₄AF 系统锥形投影相图按正三角形进行了重新绘制,并 提高了模数坐标线密度,使得利用该相图计算镁白云石质耐火材料高温相组成的精确度得到 显著提高。

关键词 相图 计算 相组成 分类号 TQ175

引言

利用相图就耐火材料在高温状态下的平衡相量及相组成进行定量分析是耐火材料研究的 一项重要手段,计算结果的准确性直接关系到材料的质量和使用效果。镁白云石质耐火材料高 温相组成的计算目前主要是依靠 Serry 等人通过系列实验数据绘制的 Cao-MgO-C₂S-C₄AF 系统锥形投影相图^[1]进行的(如图 1)。这幅三角形投影图的富 Cao 的角度不足 30°,而富 CaO 角正是白云石质或镁白云石质耐火材料的实际组成区。在这样狭小的区域内画出清晰 的、数量充分的模数坐标客观上是不可能的,疏而少的模数坐标线必然会给组成定位以及图读 数据带来误差,最终使得计算结果产生较大偏差。试想,倘若这幅图是按正三角形绘制,则富 CaO 角将由 30°提高到 60°,通过富 CaO 的硅模数($M_{si} = \frac{S}{A+F}$)坐标线在其平均间距不变时,

图 1 Serry 等提供的 Cao-MgO-C\-2S-C,AF系统在 Cao-MgO-C₂S-C,AF 底面上的锥形投影相图 也将提高 1 倍多,这样一来给实际计算带来极大方便,计算精度随之得到很大提高。基于这种 思想,我们按正三角形对图 1 进行了重新绘制,并利用此图就 Serry 等人提出的镁白云石质耐

• 收稿日期:1996-08-04

1 相图的重新绘制

我们知道,相图是依据实验数据按照一定的原理和规则绘制而成的,当系统组成坐标发生 变化时,相图的形状也将随之改变,但相图的实质内容丝毫不会发生变化。对图1进行重新绘制,仅是改变了四元组成坐标和相图的形状,新相图的每一点、线的绘制都是依据图1所示数 据进行的。

1.1 模数坐标的确定

对于 C₄AF-C₂S 边:设 C₂S 的含量为 x %,则 C₄AF 的含量为(100-x)%。参照表1 列举 的各有关矿物的化学组成可写出:

$$M_{si} = \frac{S}{A + F} = \frac{0.35x}{0.538(100 - x)}$$
(1)

$$M_{Ca} = \frac{C}{A + F + S} = \frac{0.65x + 0.462(100 - x)}{0.58(100 - x) + 0.35x}$$
(2)

表 1 $C_2S_{C_4}AF$ 和 CaO 的化学组成

矿物化学式	CaO	SiO,	Al ₂ O ₃	Fe ₂ O ₃	A+F
$2CaO \cdot SiO_2$	65	35	-	_	
$4CaO \cdot Al_2O_3 \cdot Fe_2O_3$	46.2		20.9	32.9	53.8
CaO	100				_

对于 C₂S-CaO 边:设 C₂S 的含量为 x %,则 CaO 的含量为(100-x)%。参照表 1 数据可写出:

$$M_{c_a} = \frac{0.65x + (100 - x)}{0.35x}$$
(3)

对于 C₄AF-CaO 边:设 C₄AF 的含量为 y %,则 CaO 的含量为(100-y)%。参照表 1 数据可写出:

$$M_{c_{s}} = \frac{0.462y + (100 - y)}{0.538y}$$
(4)

利用(1)~(4)式,每给出1个模数值即可求得一个相应的x或y值。这样,在CaO-C₂S-C₄AF底面上以正三角形绘制锥形投影图时,在有关矿物的重量百分量坐标上就可以准确地确定有关模数值的位置,如图2。

1.2 相界曲线、无变量点、等温线和等 M_P1线的绘制

相界曲线、无变量点、等温线和等 $M_{P,L}$ 线是在完成模数坐标的绘制后,按照图 1 所示以模数坐标为准一一对应进行绘制。如变量点 Σ_a ,在图 1 中的坐标是 M_{si} =0.2, M_{Ca} =1.14;在新图 2 中的坐标仍然是 M_{si} =0.2, M_{Ca} =1.14。显然,改绘后的 CaO-MgO-C₂S-C₄AF 四元锥形 投影相图模数坐标线密而清晰,相图要素位置准确,利用该图进行计算较之图 1 要方便得多,人为误差明显降低。

2 利用新相图进行高温相组成计算举例

表2列出Cao-MgO-C2S-C4AF系统平衡矿物组成的计算公式。

• 5 •

图 2 改进的 Cao-MgO-C₂S-C₄AF 系统在 Cao-MgO-C₂S-C₄AF 底面上的锥形投影相图
表 2 Cao-MgO-C₂S-C₄AF 系统中平衡矿物组成的计算公式

组别	条件	平衡矿物组成(wt%)计算式
1	A/F = 0.64	$CaO = C - 1.40F - 2.8S$ $C_3S = 3.8S$
1	KH>1	C₄AF=3.04F M _P =MgO=100-∑其它
•	A/F = 0.64	$C_3S=2.8(3KH-2)S$ $C_2S=8.61(1-KH)S$
Z	0.67 <kh<1< td=""><td>C₄AF=3.04F M_P=MgO=100-∑其它</td></kh<1<>	C₄AF=3.04F M _P =MgO=100-∑其它
备注	KF	I = (C - 0.35F - 1.65A)/2.8S = (C - 0.7F - 1.1A)/2.8S
:一种	镁白云石质耐	火材料的化学组成如下:
-		

组成	CaO	MgO	Al_2O_3	Fe ₂ O ₃	SiO2
ωt %	22.4	74.8	1.22	0.78	0.8

求其在1500C下的相组成。

解:先按 A/F=0.64 和 A+F=1.22+0.78=2.00 变换组成,得 Al₂O₃=0.78%,Fe₂O₃= 1.22%。再按 Solalu^[2,3]最早提供的原理和程序利用图 2 和表 2 进行高温相组成的计算。计算 程序和结果归纳于表 3。

表 3	镁白云石质耐火材料高温相组成计算
-----	------------------

3.L. 40: 411 (#	化学组成(wt%)								
订昇程序	SiO ₂	CaÚ	Al ₂ O ₃	Fe ₂ O ₃	MgO	总计	Mai	M _C	
1. 耐火材料化学组成	0.8	22.4	0.78	1.22	74.8	100	0.4	8	
2.1500 C的液相量=(<u>100-M_{P,P}</u> · <u>P</u> .	100)×	100% =	<u>100 - 100 -</u>	74.8 8.7	$\frac{22}{76} \cdot 10$	0×100	%=8.	0%	
3.1500C的液相组成	10.00	54.95	9.75	15.25	10.05	100	0.4	1.57	
4. 以物料总量为基时的液相组成	0.8	4.4	0.78	1.22	0.8	8.0	-		
5.1500 C的固相量=(100-8.0)×100	% = 92. 0)%							
6. 以物料总量为基时的固相组成	0	18.0	U	0	74.0	92.0	-		
7.1500C的固相组成	0	19.57	0	0	80.43	100	_	-	
8.1500C的液相量=8.0%			•		·			A	

9.1500 C的固相量=92.0%(其中 CaO=18.0%, MgO=74.0%)

表 3 中的计算要点是:第 2 项中的 M_{P.P}即第 1 项列举的 MgO 的含量; M_{P.L}由 l, 在图 2 中 的位置(Ma=0.4 与 1500 C 等温线的交点)直接从图 2 读出; P 和 L 的数值系顶点 CaO 至 P. 和 L_x 的距离,用刻度直尺自图 2 量得,第 3 项中的 $M_{c_x} = \frac{C}{A+F+S} = 1.57$ 是由 L_x 的位置决定 的;由于在1500C下所述材料中的C2S和C4AF(即全部SiO2AL2O3和Fe2O3)都处于液相,化 学组成 SiO2、Al2O3 和 Fe2O3 的数值可由第1 项中的相应数值乘以 100/8.0 求得。至于 CaO 的 含量可由 M_{Ca}=1.57= <u>CaO</u> A+F+S即由 CaO=1.57×(9.75+15.25+10.00)求得;MgO 由 100 - ∑其它求得。第4项中的CaO由Mca=1.57= CaO 0.78+1.22+0.8即由CaO=1.57×(0.78+ 1.22+0.8)求得; MgO 由 8.0- \(\Sigma\) 其它求得。第6项的数值是第1项与第4项之差。

当然,利用 Serry 等提供的图1也可以进行类似计算,但是图1中的L,的位置很难把 Mc. 的数值估计到 1.57 这样的精度,从而会使计算中的人为误差增大,使不同人的计算结果显示 出较大的分散性。从这里也可以看出,本文所作的进一步修正,把锥形图按正三角形绘制是合 理的。

3 结语

将 Serry 等提出的 CaO-MgO-C2S-C4AF 系统锥形投影相图按正三角形进行了重新 绘制,制得的新相图富 CaO 角增大,区域开阔,模数坐标线密而清晰,大大提高了图读数据的 准确性,有效地提高了镁白云石质耐火材料高温相组成的计算精度。

参考文献

- M. A. Serry et al. Trans Brit Ceram Soc, 1981;80(6):196 1
- 2 S. Solacolu. Ber Deut Keram Ges. 1960; 37(6); 266
- 3 S. Solacolu, Ber Deut Keram Ges, 1957; 34(5), 141

• 6 •