基于 adina 的土钉支护有限元数值模拟

李 宇',张 勤',周正飞2

(1. 河海大学 土木工程学院, 江苏 南京 210098; 2. 中航勘察设计研究院, 北京 100086)

摘 要:建立土钉支护的非线性有限元模型,土体本构采用 Mohr - Coulomb 模型,土钉之间采 用 Goodman 单元模拟,能够模拟基坑的开挖与支护的施工过程。对某一具体基坑工程进行了 模拟计算,取得了较满意的结果。

关键词:土钉支护;非线性;有限元;Adina

中图分类号:0241.82 文献标识码:A 文章编号:1671-5322(2006)02-0051-05

土钉墙实质上是由墙(钢筋混凝土面板)和 土钉以及土体构成的复合体^[1]。土钉也称砂浆 锚杆,土钉之间的土体变形通过钢筋网面板来约 束。土钉墙是基于众所周知的新奥法发展起来 的。目前土钉技术已经在德国、法国、英国、美国、 日本得到广泛的应用,由于土钉墙的费用比其它 几种基坑支护费用均低,施工噪声小等,具有良 好的经济技术效益,因而在基坑支护中得到了广 泛的应用。

1 有限元模型

基坑支护是一项较为复杂的系统工程,很难 获得其精确解,在作了很多简化以后所获得的解 析解也是相当粗略的,另外它也难以模拟基坑的 开挖全过程,但有限元法就可以很好地做到这一 点。

1.1 土的模型

土是一种复杂的复合体,具有极为复杂的力 学行为^[2,3]。尽管土的线性模型和非线弹性模型 (如邓肯张模型)用得较多,但众所周知,土体 在外力的作用下,不仅产生弹性变形而且还会产 生不可恢复的塑性变形。

对土体, Mohr - Coulomb 强度理论受到广泛 应用,其破坏准则为

$$\frac{\sigma_1 - \sigma_3}{2} = \frac{\sigma_1 + \sigma_3}{2} \sin \varphi + c \cos \varphi \quad (1)$$

$$\vec{x} \sigma_1 = \sigma_3 \tan^2(45^\circ + \frac{\varphi}{2}) + 2 \cot(45^\circ + \frac{\varphi}{2}) \quad (2)$$

这种模型概念清晰,对一般工程有较为令人 满意的精度,屈服函数为:

$$f = (\sigma_1, \sigma_2, \sigma_3) = \frac{1}{2}(\sigma_1 - \sigma_3) + \frac{1}{2}(\sigma_1 + \sigma_3)\sin\varphi - \cos\varphi = 0 \quad (3)$$

式中 σ_1 、 σ_2 和 σ_3 分别表示第1、第2和第3 主应 力; c和 φ 分别表示粘聚力和内摩擦角。在这里 加入抗拉破坏条件,当土体应力超过抗拉强度时, 认为单元破坏将不再承受拉力。本文将土体视为 弹塑性体,用弹塑性有限元进行分析以使结果更 趋近实际情况。

1.2 土钉和钉土共同作用的模拟

钉体作为重要受力构件,受力比较复杂,同时 受到拉力、剪力、弯矩的共同作用。但实际上对于 击人式土钉,钉体的抗弯强度较小,而注浆钉由于 砂浆的抗拉强度较低因而抗弯刚度也不大,所以 考虑钉体的抗弯刚度意义不大。现在普遍认为, 土钉支护在工作阶段,钉体的剪力和抗弯刚度才 得到发挥。我们用 ADINA 程序做了大量的计算

收稿日期:2005-12-20
 作者简介:李 字(1980-),男,山西晋中人,河海大学在读硕士,主要研究方向为工程地质。

分析也说明了这一点,同时对于注浆钉即使考虑 钉体刚度,可能由于砂浆开裂而钉体抗弯刚度下 降。因而本文的计算中没有考虑钉体的抗弯刚 度,土钉采用杆单元模拟。

钉土共同作用的模拟采用的是一种无厚度的

$$\begin{bmatrix} K_{e} \end{bmatrix} = \frac{tl}{4}$$

$$\begin{bmatrix} K_{i} & 0 & K_{i} \\ & 2K_{n} \\ & K_{i} \\ & & K_{i} \end{bmatrix}$$

式中,K,K,分别为接触面单元的切向及法向刚 度。可以根据两种材料的性质和粗糙度确定,或 根据计算经验确定。

1.3 土钉支护施工的模拟

土钉支护的每一步施工包括,挖除开挖区土 体,铺上面层,置入钉体。因而在有限元的计算 中,每一步施工的模拟中都要"挖除"一些土体单 元,"增加"一些面层和钉体单元,这种方法对于 ADINA 程序的实现比较简单,但是由于"死去"单 元的刚度太小,从而使整体刚度矩阵有可能成为 病态矩阵,给计算结果带来误差。本文单元统一 进行编码,利用单元生死向量进行单元装配,操作 简单易于实现,并且提高了程序运行效率。

1.4 土体单元和网格的划分

土体单元采用四边形等参单元,由于采用平 面应变假定,垂直于计算平面方向厚度取为钉体 水平间距。

单元的大小对有限元的计算精度有一定的影 响,网格越小,计算结果越接近真实状态。但是单 元划分太小,单元数太多,计算量太大。本文对应 力变化较大的地方进行了局部加密处理,主要包 括开挖面附近,钉体附近一定范围内的土体。实 践证明这种局部加密效果较好。

接触面单元 Goodman 单元,该单元能模拟接触面 的滑动和张裂,模型简单,参数很少,概念清晰。 Goodman 于 1976 年对该单元作了修正,修正后的 单元可以考虑到相对转角的影响。单元刚度矩阵 如下:

2 实例分析

本文对实际工程进行了模拟计算,基于大型 有限元分析软件 ADINA 以分析土钉支护的坡后 土体水平位移和钉体内力工作性状,以及基底降 起状态,并与实测结果进行对比,从而验证计算模 型正确与否,程序运行是否可靠。

2.1 工程概况

该工程位于北京市区内,基坑开挖尺寸长 110 m,宽70 m,深度20.86 m,属超深超大基坑。 基坑东、西、北侧采用桩锚联合支护,南侧采用土 钉支护,本文主要以南侧十钉支护为例进行有限 元二维建模。南侧土钉墙墙面坡度为1:0.3,共 设 12 层土钉。土钉孔径 110 mm,竖向间距 1 400 mm,水平间距1500 mm,第一层土钉长8 m,其余 土钉长度均为 12 m。面层喷射混凝土强度为 C20, 详见土钉支护方案模型图, 为完全开挖后状 况(图1)

根据本工程岩土工程勘察报告,本工程所处 地貌单元自西部山前向东部平原区由冲洪积扇讨 渡为冲洪积平原区,地层岩性构成由碎(卵)石类 土、砂类土渐变至以粘性土、粉土为主。土层参数 见表1。

表1 土层物理力学参数

Table russical mechanics parameter of every soll layer						
层号	土质	深度	密度ρ	弹性模量 E	粘聚力C	内摩擦角 Φ
		/m	∕g • cm ⁻³	/MPa	/kPa	/(`)
1	粉质粘土	3~10	2.05	8.9	22	15
2	粉质粘土	10 ~ 15	2.03	8.1	22.6	11.7
3	粉砂	15~21	2.08	14	31.1	16.6
4	中砂	21 ~	2.01	15.2	37.6	15.7

2.2 计算模型及计算过程

土体的本构模型选用 Mohr – Coulomb 模型, 参数如表1,土钉采用杆单元模拟,弹性模量 E 为 200 × 10⁶ kPa,钉土共同作用采用 Goodman 单元。

计算的步骤大体为:

(1)计算土体在自重作用下的初始应力;

(2)施工模拟的计算,每开挖一层土体即置 人土钉铺设面层,依次进行,直至完成整个支护体 系。整个开挖过程简化为三次开挖,土钉铺设为 12 层。

2.3 计算结果及对比分析

2.3.1 有无土钉支护下塑性区的对比

为了弄清土钉墙的支护作用机理,本文针对 此工程,分别计算同一地质及开挖条件下有土钉 墙和无土钉墙支护情况,计算结果分别见图2和 图 3, 图中的浅色部分是滑移面, 滑移面以外是 破坏带(塑性区), 对比两种情况下的图形可以清 楚地发现有土钉墙支护的基坑破裂滑移面明显较 无土钉墙支护的要靠近开挖面, 也就是说土体的 破坏带明显要小。因此可以认为土钉的作用是增 强土体的整体性能, 减小破坏带的范围, 从而减 小基坑的侧向变形。实际上土钉并不能阻止开挖 附近土体的破坏, 但可以限制其向纵深部发展, 土钉墙的混凝土面层的作用是防止破坏土体的塌 落, 从而引发纵深部土体新的塌落。

2.3.2 基坑水平位移计算分析

坡后1m处土体的水平位移计算结果与实测 结果比较如图4所示。由图4可知,计算结果与 实测结果较接近,拟合比较切合实际情况,变化趋 势相同图形偏左的3条曲线为实测曲线,图形偏

图 2 有土钉支护的基坑塑性变化图 Fig. 2 Mold quality transformation of the foundation pit with the nails

右的三条曲线为计算曲线,总体上实测值较大与 计算值。坡后土体水平位移沿深度分布呈中间大 两端小凸型分布,坑底以下土体水平位移不大,并 且衰减的较快,每一步开挖,土体水平位移都有所 增加。开挖结束时,坡后土体水平位移不大。图 5为开挖完毕后土体水平位移云图。

2.3.3 土钉轴力计算分析

表 2 为每层土钉分步开挖后计算轴力值,由 表看出,每层土钉轴力均未达到极限值,基坑支护 基本稳定。靠近基坑顶部的土钉应力值较大,是 因为顶部变形较大,土钉也因此担负比较大的拉 力作用。沿基坑向下土钉的轴力逐步减小,这些 情况均符合实际施工时的状况。

图 5 开挖完毕时土体水平位移云图 Fig. 5 Level displacement of the soil after excavation

泉	12 分布开挖	后毎层土钉轴	力值			
Table2 Stre	ess of the nails	in every layer	after exavation			
+ 67	分步开挖结束后土钉应力值/kN					
上51 层号	第1步 开挖结束	第2 步 开 挖 结束	第 3 步 开挖结束			
1	11.61	12.97	35.80			
2	20.60	20.98	53.24			
3	23.90	36.42	40.14			
4	24.44	36.95	43.36			
5		28.89	38.76			
6		31.63	39.87			
7		27.34	31.66			
8		30.65	35.48			
9		26.33	29.65			
10			25.68			
11			24.41			
12			20.96			

3 结论

(1)基于有限元软件 ADINA 进行建模能够 较好的模拟基坑开挖的实际情况,计算结果基本 吻合实际情况。

(2)通过对某实际工程进行模拟计算,分析 土钉支护的坡后水平位移和钉体内力的工作性 状,并与实测结果进行对比分析的结果表明,计算 结果与实测结果有较一致的规律性,两者在数值 上也较接近,说明本文建立的非线性有限元计算 模型的正确性和程序的可靠性,并能够较好的运 用于工程实际的分析和预测。

参考文献:

- [1] 程良奎. 岩土工程加固实用技术[M]. 北京:地震出版社, 1994.
- [2] 孙钧. 地下结构有限元解析[M]. 上海:同济大学出版社, 1988.
- [3] 章根德. 土的本构模型及其土工程应用[M]. 北京:科学出版社,1995.

Nonlinear FEM Numerical Simulation of Soil – Nailed Support System Base on Adina

LI Yu¹, ZHANG Qin¹, ZHOU Zheng - fei²

(1. College of Civil Engineering, Hohai University., Jiangsu Nanjing 210098, China; \

2. Ayic Institute of Geotechnical Engineering, Beijing 100086, China

Abstract: A nonlinear finite element model (FEM) has been developed for the analysis of soil – nailed support system. Meanwhile several kinds of constitutive model were chosen for the nonlinearity and inelasticity of soil, and the Goodman element was adopted for the soil – nail interface. The staged excavation and retaining can also be stimulated by this model. An engineering case is analyzed as an example, and the result are satisfactory.

Keywords : soil nailing ; finite element analysis ; nonlinearity ; Adina