多体互作用对 13 – 原子团簇相变特性的影响*

孙厚谦

(盐城工学院基础教学部 江苏盐城 224003)

摘 要 采用 M. I. Baskes 的 Lennard – Jones Embedded – Atom(LJ – EMA)势作为原子之间的 互作用,结合常能分子动力学模拟,计算了13 – 原子团簇的热曲线、方均根键长起伏、比热、动 能的短时平均、位移平方的平均、其它12 个原子相对于中心原子的角分布函数,着重地计算 了相变区域的情形,对团簇融化 – 凝固相变特性进行了较为详细的研究,得出多体作用力的 大小增加、范围减小导致融化温度(动能)的降低和共存区域范围变小的结论,证实了在一定 的总能范围内类固(solidlike)和类液(liquidlike)两类特性团簇的共存;进一步明确了两步过 程(表面融化)的成因;观察到在三种较大多体互作用范围势的情况下,出现负比热;进一步 揭示了热曲线斜率、方均根键长起伏、比热和动能的短时平均分布之间的关联。

关键词 团簇 相变 洪存区域

中图分类号:0561.1 文献标识码:A

近年来 小系统特别是团簇的融化 – 凝固相 过渡引起了人们广泛的兴趣^[1-5]。人们的主要目 的是将分子层次上的同分异构体的动力学与熟知 的宏观相变相联系。如对中小尺寸的氩原子团簇 的研究结果表明,一些惰性气体原子团簇(如 Ar₇、Ar₁₃、Ar₁₉)具有奇特的融化特性。采用常温 分子动力学(MD)模拟,它们存在着明确的、但不 相等的极限凝固和融化温度(T_f , T_m)。在 $T_f < T$ < T_m 范围(共存区域),团簇表现出为类固(solidlike)和类液(liquidlike)两类特性。类固团簇具 有较高的温度(动能),而类液团簇具有较低的温 度(动能)。采取常能分子动力学模拟,则总能对 应地存在着 $E_f < T < E_m$ 范围为共存区域。这些 特性显然不同于块体晶体。团簇这些奇特的融化 特性的形成原因是什么?进行模拟时采用的互作 用势对团簇的融化特性有怎样的影响?这是值得 深入探讨的。

在本文中,我们选取13 – 原子团簇作为研究 对象,采用 M. I. Baskes^[6]等人的 LJ – EMA 势作 为原子之间的互作用势。在本文所使用的势的情

文章编号:1671-5322(2007)01-0010-06

况下,13 - 原子团簇的基态结构都是非常稳定的 二十面体,为分析团簇从刚性(固态的)向非刚性 (液态的)过渡提供了适当的系统。通过常能分 子动力学模拟,我们计算了热曲线、方均根键长起 伏、比热、动能的短时平均、位移平方的平均、其它 12 个原子相对于中心原子的角分布函数(angular distribution function (adf),特别着重地计算了相 变区域的情形,对团簇融化 – 凝固相变特性进行 了较为详细的研究。

1 势模型与计算方法

1.1 势模型

M. I. Baskes 将 LJ 对势扩展到多体形式,成为 LJ – EAM 形式

$$E = [F(\rho_i) + \frac{1}{2} \sum_{j \neq 1} \phi(r_{ij})] \quad (1a)$$

$$F(\overline{\rho_i}) = \frac{AZ_0}{2}\overline{\rho} [\ln(\overline{\rho}) - 1] \qquad (1b)$$

$$\phi(r) = \frac{1}{r^{12}} - \frac{2}{r^6} - \frac{2}{Z_0} F[\rho(r)] \quad (1c)$$

作者简介为师厚谦(1954-),男、江苏盐城市人、教授、硕士、主要研究方向为凝聚态物理理论。

^{*} 收稿日期 2006 - 12 - 12 (+ 元石方数据=)#(1054) B (古井井) (+ 古 地域)

$$\bar{\rho_i} = \frac{1}{Z_0} \sum_{j \neq 1} \rho(r_{ij})$$
 (1d)

 $\rho(r) = \exp[-\beta(r-1)]$ (1e)

式中 Z_0 是最近邻数(在本文中取为 12),参数 A控制多体互作用的强度,参数 β 描述电子密度的 衰减快慢,势中的能量以势阱深度 ε 为单位。在 我们的研究中 $(A \beta)$ 分别取(0,1.2)(0.2, 1.2)(0.4,1.2)(0.6,1.2)(0.4,4.2), (0.4 β .5)(0.4 β .5)。从文献 6 表 1 可知(0, 1.2)当然为 LJ 势,即反映了惰性气体原子之间的 互作用(只要A = 0,即为LJ势)(0.4,4.2), (0.4 β .5)(0.4 β .5)三种势反映了金属原子之 间的互作用,而(0.2,1.2)(0.4,1.2)(0.6, 1.2)则反映了居间互作用.所以本文的研究结果 具有相当普遍的意义。

1.2 常能分子动力学模拟方法

我们的常能分子动力学模拟方法,使用速度 Verlet 算法求解牛顿运动方程,采用的时间步长 为2×10⁻³,保证了团簇总能的守恒精度在 0.01%之内;以台阶式的方式逐渐加热非旋转、非 平移的结构研究不同团簇的融化行为得到热曲 线;每一个加热步,让系统传播110×10⁴时间步, 其中首先经过10⁵步让系统平衡,在其余的10⁶ 步中,对动能 E_k 和势能U求平均得到热曲线上 的点,总能 $E = E_k + U$;改变到新的能量是通过按 比例变化前面常能计算所得到的速度实现的。

为得到合适的初始结构,我们首先采用遗传 算法^[7],优化了13 – 原子团簇的结构,所得到的 基态结构都是二十面体,稍加变形之后作为模拟 的初始结构。

1.3 有关量的计算公式

1.3.1 平均动能

我们计算了两种类型的平均动能:对整个轨 道求平均(以 E_k 表示),沿着轨道对500个连续

时间步进行短时平均(以 E_k ,表示)。短时平均 是近似地对团簇的两到三个振动周期进行的,所 以它消除了团簇"呼吸"(breathing)运动所导致 的大的动能起伏,同时能追踪系统的时间演变情 况。平均动能与系统的动力学温度*T*的关系为:

$$T = \frac{2N E_k}{(3N - 6)k}$$
 (2)

式中 *N* 是团簇中的原子数 *k* 是玻尔兹曼常数。 1.3.2 比热 *C*^{*}

$$C_{V}^{*} = \frac{1}{N} [1 - (1 - \frac{2}{3N - 6}) E_{k} E_{k}^{-1}]^{-1}$$

$$(C_{V}^{*} \overline{k} \overline{k} W k 9 K)$$
(3)

1.3.3 方均根(rms)键长起伏δ

$$\delta = \frac{2}{N(N-1)} \sum_{i < j} \frac{(r_{ij}^2 - r_{ij}^2)^{1/2}}{r_{ij}}$$
(4)

$$\vec{r}^{2}(t) = \frac{1}{Nn_{t}} \sum_{j=1}^{n_{t}} \sum_{i=1}^{N} \left[\vec{r}_{i}(t_{oj} + t) - \vec{r}_{i}(t_{oj} + t) \right]^{2}$$
(5)

 n_t 是不同时间原点的个数。 $\tilde{r}^2(t)$ 曲线的斜率 为扩散常数 D

$$D = \frac{1}{6} \frac{d \vec{r}^{2}(t)}{dt}$$
 (6)

1.3.5 角分布函数(adf)

adf 给出表面原子与中心原子所成角度的分布几率。

δ、 ř²(t)、adf 都是与原子运动激烈程度相
 关的物理量,是团簇刚度相当直接的标志。

2 计算结果和讨论

图 1 –4 给出了计算所得的热曲线 E_k (E), δ (E)、采用(0.2 ,1.2)、(0.4 ,8.5)势时中心原 子、表面原子、所有原子的 δ_1 (E)、 δ_2 (E)、 δ (E)和 采用(0.0 ,1.2)、(0.2 ,1.2)、(0.4 ,4.2)、(0.4 ,

图 1 热曲线 ,每粒子的平均动能作为总能的函数

Fig. 1 Cartesic Furve showing the mean kinetic energy per particle as a function of the total energy per particle

图 4 每粒子比热作为每粒子总能的函数 C_v^* (E) 以玻尔兹曼常数 k 约化)

Fig. 4 Specific heat per particle as a function of the total energy per particle $C_v^*(E)$

6.3)、(0.4 /8.5)势时的C*(E)曲线。热曲线 E_k (E)斜率的改变、& E)和比热的陡峭增加是 团簇经历固 - 液相变的基本标志。图 5 给出使用 (0.0,1.2), (0.2,1.2), (0.4,1.2), (0.4,8.5) 势时短时平均 E_k 、的分布 $P(E_k)$ 。在共存 区域 $P(E_k)$)是将 E_k , 的分布向双峰高斯分 布作最小二乘方拟合得到的。图6分别给出采用 (0.4 A.2)势时,在固态、液态、共存区域类固和 类液团簇的 adf 曲线。为得到图 6 的曲线,我们 采用下列分类方法。找出双峰之间 P(E_k)最 小值时所对应的 E_k , 作为分界值 E_k , separatrix, adf 等物理量先在每个短时间隔进行相应累加 接 着将短时间隔的 E_{μ} 与 E_{μ} , separatrix 相比 , 如果 小 则该间隔计算所得的累加和叠加到与"低动 能态"相联系的有关量上,反之,则叠加到与"高 动能态"相联系的有关量上。在模拟结束时,再 分别进行统计平均。

从图 1、图 2、图 4 和图 5 可以看出增大 A 即 多体互作用疗的振小,增大 β 即减小多体互作用

力的范围 将导致融化温度显著降低。如图1中, 热曲线斜率变化点所对应的 E_{μ} 的演变、图 5 中 的 E_k , 分布曲线向较低动能移动是融化温度变 化的直接标志 :图 2 与图 4 中 δ_{v} C^{*} 急剧变化总 能的演变可以间接地反映融化温度的变化。Ersin Yurstsever^[5]等人指出 过大的 A 值将导致自发 的分裂 属于液类相的异构体没有固类二十面体 那样紧密。当A 增加时 属于液类相的异构体相 对于基态的能量变得越来越低。增加 β 也减少了 在两个最低能量异构体之间的能量差 ΔE :当 A $= 0.4 \text{ ft} \beta = 1.2 \text{ ,} \triangle E = 2.42 \varepsilon \beta = 8.5 \text{ ,} \triangle E =$ 139ε 这些能隙与融化迁移相关联,二十面体结 构是高度应变的结构。根据 Doye 等人^[8]对 Morse 团簇研究的结果,随着势的范围的降小,二 十面体结构的应变能量迅速增加 从而容易失稳。 上述研究结果很好地解释了 $A \subseteq B$ 的变化对融点 的影响。下面再作一些具体讨论。

2.1 两步过程

在我们所采取的势的情况下 $\delta_2(E)$ 的急剧

图 5 每粒子动能的 500 个时间步短时平均 E_{i} 的分布 $P(E_{i})$

变化稍早于 δ₁(E)(~0.1eV)(图3)δ₂(E)开始 陡峭增长只标志着表面原子频繁异构化的开始, 并不形成明确的表面融化态 ,而 $\delta_1(E)$ 开始陡峭 增长则对应于涉及中心原子的频繁异构化 ,是团 簇真正开始融化的标志。结合 C_v^* (E)曲线(图 4)可知, C^{*}_ν(E), δ₁(E)急剧增长开始点基本重 合。这表明在本文的 LJ - EMA 势的情况下 13 -原子的融化不是表面融化机制、而是固液共存机 制占支配作用。C. Rey 等人^[4]以类 LJ 势为团簇 原子间互作用,研究13-原子团簇的融化特性, 发现使用具有较软核的势时,具有明确的两步融 化过程 从而将该过程归之于势核的软化 而不是 多体效应。而我们的研究中,变化决定多体互作 用的参数 Α 与 β 对两步过程未产生影响 进一步 证实了他们的结论。

2.2 动能短时平均 E_k 的双峰分布与共存区 域

在我们考虑的所有的势的情形下,13-粒子 团簇的 E₄ 都存在着一定的总能范围,动能具 有明确双峰分布。将500个时间步动能短时平均 的分布向双峰高斯分布作最小二乘方拟合时 相 应的两个期待值差别比较大,当系统在两相之间 波动时,能够在每一个相中滞留足够长的时间,建 立起相应的率衡特性。变化 $A \subseteq \beta$,对双峰分布

Fig. 5 Distribution $P(E_{k})$ of the 500 time step short – time averages of the kinetic energy per particle E_{k} 存在的能量范围有明确的影响。按(0.2,1.2)。 $(0.4 \ 1.2)(0.6 \ 1.2)(0.4 \ 4.2)(0.4 \ 6.3)$ (0.4 8.5)的顺序,所对应的每粒子总能范围分 别是-2.769~-2.35约为0.42、-2.811~ -2.48约为0.33、-2.846~-2.615约为0.23, -3.231~-2.9约为0.33、-3.423~-3.115 约为 0.31、 - 3.535 ~ - 3.25 约为 0.28。可以看 出 固定 β 增大A 固定A 增大 β 都导致双峰存 在区域变小。

> 从 adf、 $\tilde{r}^2(t)$ 的计算可以清楚地看到" 高 动能态"、"低动能态"分别有类固、类液结构特 性。对于标准的二十面体,中心原子与表面原子 所成的角中 6 个为 180° 30 个为 63. 434 89° 30 个为116.5625°。在图6中,我们给出了(0.4, 4.2)势在几个总能时的情形。(图 6a 中,两条曲 线分别是对2000个独立的时间原点取平均。图 6b、6c 中 S L T 分别为类固态 ,类液态 ,整个团 簇的 adf。6b 中三条曲线分别是对 1 363(S) 637 (L) 2 000(T)个独立的时间原点取平均 5c 分别 是对 284(S), 1716(L), 2000(T)个独立的时间 原点取平均)。在E = -3.577的低能时,其结构 基本为刚硬的二十面体,图(6a),团簇在60°和 120°最近邻角处具有尖锐的极大;几乎不存在 90°最近邻角分布。而 E = -2.731的高能液态团

 Fig.6 adfs at some total energy

 簇 尽管 60°和 120°处的峰仍然存在,但具有更加
 所对应的总

 均匀的角分布,且有清楚的 90°最近邻角分布。
 分布双峰高

 对于存在动能双峰的区域,分别计算 13 – 粒子团
 化的部分的

 簇的"高动能态"与"低动能态"的 adf,可以看
 上述现象可

 到 "低动能态"的 adf 在 60°和 120°的峰没有"高
 志着团簇中

 动能态"的 adf 在 60°和 120°的峰没有"高
 右可能在类

 率。正如可预料的,整体的 P_c (90°)随着总能的
 在本文的 L

 增加而增长。
 不是表面融

我们还计算得出 $\hat{r}^2(t)$ 曲线 ,从中可以发现 与高动能相联系的结构的 $\hat{r}^2(t)$ 曲线表现出的 趋势与固类结构几乎一致 ;与低动能相联系的结 构的 $\hat{r}^2(t)$ 曲线表现出的趋势与液类结构几乎 一致。关于这方面的讨论可以参看文献 1~3]。

"高动能态"、"低动能态"分别有类固、类液 结构特性,从物理的角度来理解是显而易见的。 总能一定动能高,则势能低,从而对应着类固态; 动能低,则势能高,从而对应着类液态。

2.3 C_v*(E)变化特性

与 E Yurstsever^[5]等人研究的结果相同 增大 β 即减小互作用的范围 ,导致 $C_v^*(E)$ 的峰显著降 低。不过在我们的研究中 ,对于(0.2,1.2)、 (0.4,1.2)、(0.6,1.2)这三种互作用范围比较大 的势 ,比热呈现出复杂变化 ,并出现了为负的情 况。从图 1a 可以看出 ,在共存区域 ,热曲线出现 S - 形状 ,这是出现负比热的显著标志。这里所出现的情形与现行的普遍接受的较短范围的相互作用易于导致负比热的理论相矛盾(参见文献[5,9])。我们认为这种现象可能与势的 LJ 部分和多体互作用部分复杂的互相影响有关。对于产生这种现象的原因需作进一步深入探讨。

从图 1 ~ 图 5 ,可见 , $C_v(E)$ 开始陡峭变化的 起点、热曲线 $E_k(E)$ 斜率第一次变化处、 $\delta_1(E)$ 急剧增长起点数据 k_k ,分布出现双峰的起点四者 所对应的总能值相一致 C_v^* (E)的峰值点、 E_k 、 分布双峰高度基本相等点、 E_{L} (E)曲线缓慢变 化的部分的中点三者所对应的总能值相一致。对 上述现象可解释如下:①δ₁(E)开始急剧增长,标 志着团簇中所有原子都在激烈运动,这时团簇才 有可能在类固与类液两种形式之间转换。这表明 在本文的 LI – EMA 势的情况下 13 – 原子的融化 不是表面融化机制、而是固液共存机制占支配作 用。② E, 分布存在双峰区域时,开始阶段,随 着总能的增加,系统在类液态停留的相对时间增 长 增加的总能主要转化为势能 系统的动能 温 度)升高缓慢,这势必导致C*(E)陡峭增长,在极 端情况下,系统的动能(温度)甚至下降,导致负 比热情形。但当系统在类液态停留的相对时间为 主时 总能的增加又可以转化为系统的动能 导致 $C_{v}^{*}(E)$ 陡峭下降。

3 结论

采用 M. I. Baskes 的 Lennard – Jones Embedded – Atom 势作为原子之间的互作用,结合常能 分子动力学模拟,计算了 13 – 原子团簇的热曲 线、方均根键长起伏、比热、动能的短时平均、位移 平方的平均、其它 12 个原子相对于中心原子的角 分布函数,着重地计算了相变区域的情形,得出多 体作用力的大小增加、范围减小导致融化温度 (动能)的降低和共存区域范围变小的结论;证实 了在一定的能量范围内类固(solidlike)和类液 (liquidlike)两类特性团簇的共存;进一步明确了 两步过程(表面融化)的成因;观察到在三种较大 多体互作用范围势的情况下,出现负比热;揭示 了热曲线斜率、方均根键长起伏、比热和动能的短 时平均分布之间的关联。

参考文献:

- [1] Jellinek J, Beck T L, Berry R S. Solid liquid phase changes in simulated isoenergetic Ar₁₃[J]. J. Chem. Phys. , 1986, 84 2733 – 2794.
- [2] Beck T L Jellinek J Berry R S. Rare gas clusters : Solid , liquids , slush , and magic numbers [J]. J. Chem. Phys. ,1987 , 87 545 - 554.
- [3] Jellinek J, Beck T L, Berry R S. Melting and freezing in isothermal Ar₁₃ clusters J. J. Chem. Phys. ,1987 & 5456 6464.
- [4] Rey C, Garca Rodeja J, Gallego L J, Grimsos M J. Influence of the softenss of the repulsive core interaction on cluster melting J]. Phys. Rev. E, 1998 57 4420 - 4425.
- [5] Ersin Yurstsever Florent Calvo. Many body effects on the melting and dynamics of small clusters [J]. Phys. Rev. B, 2000 62 9977 – 9980.
- [6] Baskes M I. Many Body Effects in fcc Metals : A Lennard Jones Embedded Atom Potential [J]. Phys. Rev. Lett., 1999 83 2592 - 2595.
- [7] Deaven D M ,Ho K M. Molecular geometry optimization with a genetic algorithm J J. Phys. Rev. Lett. ,1995 75 288 291.
- [8] Doye J P K, Wales D J. The effect of the range of the potentiall on the structures of clusters J]. J. Chem. Phys. ,1995, 103 4234 – 4249.
- [9] Reyes Nava J A ,Garzón I L ,Michaelian K. Negative heat capacity of sodium clusters [J]. Phys. Rev. B. , 2003, 67: 165401.

Influence of the Many – body Interaction on Cluster Phase Transition

SUN Hou - qian

(Department of Basic Sciences , Yancheng Institute of Technology , Jiangsu Yancheng 224003 , China)

Abstract :Using a Lennard – Jones Embedded – Aton(LJ – EMA)potential proposed by Bakes , combined with the constant energy molecular dynamics simulation , we calculated the caloric curve the rms bond length fluctuations , the specific heat , the short – time average of kinetic energy , the mean – square displacement , and the angular distribution function of a 13 – atom cluster. The influence of many – body interaction on cluster phase transition was extensively studied , and particular attention was paid to the coexistence region . It was observed that increasing the magnitude or decreasing the range of the many – body leads to a decrease in the melting temperature ; the coexistence of a solidlike form and a liquidlike form within certain range of total energy was confirmed ; the origin of a two – step cluster melting process was further elucidated ; the correlation of the slope changes of caloric curve , the rms bond length fluctuations , the evolution of specific heat and the short – time average of kinetic energy was opened out ; the fact of negative specific heat was found when three potentials of having larger interaction ranges were used. **Keywords** ; cluster ; phase transition ; coexistence region