第二大特征根不超过1的 Cactus

张荣

(盐城师范学院 数学科学学院,江苏 盐城 224002)

摘要:图的第二大特征根与图的直径有着密切的联系,而图的直径对于网络研究有着非常重要的作用,因而研究图的第二大特征根有着很重要的实用价值。确定第二大特征根不超过1的图是图谱中著名的未解决问题,近年来人们得出了一系列关于第二大特征根不超过1的特殊简单图的结论。任意两个圈至多有一个公共顶点的简单连通图称为 Cactus。运用找出禁用子图的方法给出了第二大特征根不超过1的所有 Cactus。

关键词:Cactus;第二大特征值;导出子图

中图分类号:0157.5 文献标识码:A

文章编号:1671-5322(2011)03-0019-04

设 G = (V(G), E(G)) 是 n 阶简单无向连通 图, $V(G) = (v_1, v_2, \dots, v_n)$ 为其顶点集,E(G)为其 边集, $A = (a_{ii})$ 是一个 $n \times n$ 的(0,1)矩阵,其中 a_{ii} =1 当且仅当 v_i 与 v_i 邻接。 $P(G; \lambda) = \det(\lambda I -$ A)称为 G 的特征多项式,其特征根可排列为 λ_1 $(G) \ge \lambda_{2}(G) \ge \cdots \ge \lambda_{n}(G)$, 称 $\lambda_{2}(G)$ 为 G 的第 二大特征根。图的第二大特征根已被许多文献证 明与图的直径有着密切的联系。为了使网络具有 较高的效率,我们希望图的直径小,而连通度、可 靠性大,因而研究图的第二大特征根具有很重要 的价值。另一方面,由于任一图 G 的第二大特征 根 $\lambda_{2}(G)$ 与其补图 G^{c} 的最小特征根 $\lambda_{n}(G^{c})$ 满 足不等式 $\lambda_2(G) + \lambda_n(G^c) \leq -1$, 而任一图的的 线图 L(G) 的最小特征根均不小于 -2 ,因而国际 著名的图谱专家 D. Cvetkovi ć很自然地提出了"求 出满足 $\lambda_2(G)$ ≤1 的所有图 G"这一问题^[1]。此 后的20多年,经过许多人的努力,该问题的研究 有所进展但尚未最终解决。1989年,洪渊给出了 满足 λ_2 < 1 的所有树^[2];1998 年,束金龙给出了 满足 $\lambda_2 = 1$ 的所有树^[3];2004年,徐光辉给出了 满足 $\lambda_2(G)$ ≤1的所有单圈图^[4]。2005年,郭曙 光给出了满足 $\lambda_{2}(G) \leq 1$ 的所有双圈图^[5];2006 年,徐光辉给出了第二大根小于1的简单图[6];

2008 年,Zoran Stanić给出了第二大特征根不超过 1 的正则图和冠(corona)^[7];2009 年,Zoran Stanić给出了第二大特征根小于 1 的嵌套分割图(nested split graph)^[8];2010 年,李书超给出了满足 λ_2 (G) \leq 1 的所有三圈图^[9]。

任意两个圈至多有一个公共顶点的简单连通图称为 Cactus。边数等于顶点数减 1 的简单连通图称为树,边数等于顶点数的简单连通图称为单圈图。所有的树和单圈图都是 Cactus。Cactus 被许多学者研究过,例如[10,11]。本文主要研究Cactus 的第二大特征根,运用找出禁用子图的方法给出了满足 $\lambda_2(G) \leq 1$ 的所有 Cactus。

1 引理

用 C_n 和 P_n 分别表示 n 阶圈和路, $K_{1,n-1}$ 表示 n 阶星图,用 G-x 表示图 G 删除点 x 以后得到的图, $x \in V(G)$ 。设 C_p 和 C_q 是两个没有公共点的圈, $v_1 \in C_p$, $v_l \in C_q$ 。 v_1 和 v_l 之间用长为 l-1 的路 $v_1v_2\cdots v_l$ 相连,其中 $l \ge 1$,l=1 表示 v_1 和 v_l 重合,称所得的图为 ∞ —型图,简记为 B(p,l,q),如图 1 所示。

引理 $1^{[12]}$ 设 V' 是图 G 的顶点集的一个子集, $V(G)! = n \perp V' \mid = k$,则

收稿日期:2011-08-10

基金项目: 江苏省自然科学基金资助项目(BK2010292)

作者简介:张荣(1981-),男,江苏盐城人,讲师,硕士,主要研究方向为运筹学与控制论。

图 1 B(p,l,q)Fig. 1 B(p,l,q)

$$\lambda_{i}(G) \geqslant \lambda_{i}(G - V') \geqslant \lambda_{i+k}(G),$$

$$(1 \leqslant i \leqslant n - k)$$

引理 $2^{[4]}$ 设 u 是 G 的一个顶点,N(u) 是所有与 u 相邻的顶点组成的集合,C(u) 是所有包含 u 的圈组成的集合,则图 G 的特征多项式满足

$$P(G;\lambda) = \lambda P(G-u;\lambda) -$$

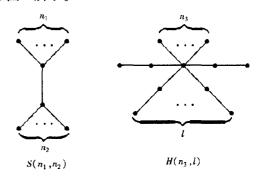
$$\sum_{v \in N(u)} P(G - u - v; \lambda) - 2 \sum_{Z \in C(u)} P(G \backslash V(Z); \lambda)$$

引理3[3] 设 T 为树、则

 $(1) \lambda_2(T) < 1$ 当且仅当 T 同构于 P_2 或 $K_{1,n-1}$ 或 S(1,n-3)。

 $(2)\lambda_2(T)=1$ 当且仅当 T 同构于 S(2,2)或 $H(n_3,l)$ 。

其中 $S(n_1,n_2)$ 表示双星图,即在 P_2 的一端接出 n_1 条悬挂边,另外一端接出 n_2 条悬挂边后所得到的图。图 $H(n_3,l)$ 是在图 P_5 的中间顶点接出 n_3 条悬挂边和 l 条长为 2 的悬挂路所得的树,如图 2 所示。



E 2 $S(n_1, n_2)$, $H(n_3, l)$ **Fig.** 2 $S(n_1, n_2)$, $H(n_3, l)$

引理 $4^{[4]}$ 单圈图 G 满足 $\lambda_2(G) \le 1$ 当且仅 当图 G 为 C_6 或者为 G_i $(i=1,\dots,14)$ 的单圈导出 子图(图 3)。

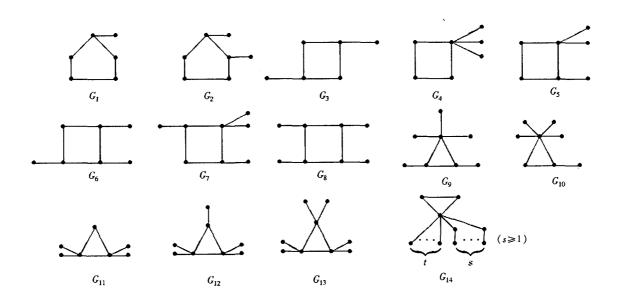


图 3 $G_i (1 \le i \le 14)$ Fig. 3 $G_i (1 \le i \le 14)$

引理 5^[5] 图 4 所示的 3 个图的第二大特征根大于 1。

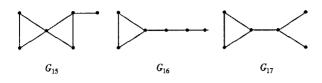
引理 $6^{[5]}$ 若图 G 为 Cactus 且 G 恰含两个 圈,则有 $\lambda_2(G) \ge 1$,等号成立当且仅当图 G 为图 5 所示,记为 $C_{2,s,t}$,其中 $s \ge 0$, $t \ge 0$ 。

记 $C_{r,s,s}$ 为图 6 所示类型图。当 r=s=0 时,

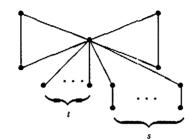
 $C_{r,s,t}$ 为星图; 当 r = 0, s = 1 时, $C_{r,s,t}$ 为 S(1, n - 3); 当 r = 0, $s \ge 2$ 时, $C_{r,s,t}$ 为 $H(n_3, l)$ 。

2 主要结果

定 理 设 G 为 Cactus,则 G 满足 $\lambda_2(G) \le 1$ 当且仅当图 G 为图 G 所示 $C_{r,s,t}(r \ge 0, s \ge 0, t \ge 0)$



E 4 $G_i(15 \le i \le 17)$ **Fig.** 4 $G_i(15 \le i \le 17)$



E 5 $C_{2,s,t}$ **Fig.** 5 $C_{2,s,t}$

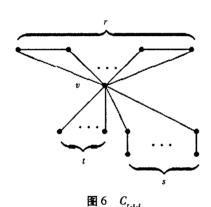


Fig. 6 $C_{r,s,t}$

0)或 C_6 或 C_i ($i = 1, \dots, 13$)的连通导出子图。

证 明 文献[7]指出,所有不超过 5 个顶点的图 G 都满足 $\lambda_2(G) \leq 1$ 。容易看出,不超过 5 个顶点的 Cactus 为 $C_{r,s,t}$ 或 G_i ($i=1,\cdots,13$)的连通导出子图。

下面假定图 G 的阶数大于 5 ,当 G 为树时,根据引理 3 , $\lambda_2(G) \le 1$ 当且仅当图 G 为 S(2,2) 或 $C_{r,s,t}(r=0,s\ge 0,t\ge 0)$,而 S(2,2) 可以看作是 G_{13} 的导出子图;当 G 为单圈图时,根据引理 4 , λ_2 (G) ≤ 1 当且仅当图 G 为 $C_{r,s,t}(r=1,s\ge 0,t\ge 0)$ 或 G_6 或 $G_i(i=1,\cdots,13)$ 的连通导出子图。

当G含有圈的个数为 $r(r \ge 2)$ 时,证明步骤如下。

首先,我们证明,若图 G 满足 $\lambda_2(G) \leq 1$,则 G 的所有的圈必交于一点。假设 G 中存在两个圈 没有交于一点,则 G 必有一个 ∞ - 型图 B(p,l,q)

作为其导出子图,其中 l > 1。由引理 1 和引理 6 知, $\lambda_2(G) \ge \lambda_2(B(p,l,q)) > 1$,矛盾。

其次,我们证明,若图 G 满足 $\lambda_2(G) \le 1$,则这 些交于一点的 r 个圈的圈长都只能是 3, $r \ge 2$ 。假设图 G 中存在一个圈,其圈长为 p > 3,则 G 必有一个 ∞ -型图 B(p,1,q) 作为其导出子图。由引理 1 和引理 6 知, $\lambda_2(G) \ge \lambda_2(B(p,1,q)) > 1$,矛盾。

最后,我们证明,若图 G 满足 $\lambda_2(G) \leq 1$,则图 G 必为 $C_{r,s,t}$,其中 $s \geq 0$, $t \geq 0$, $r \geq 2$ 。前面两步已经证明,满足 $\lambda_2(G) \leq 1$ 的 Cactus 的所有圈都交于一点且圈长都是 3,不妨把这个点记为 v,下面证明,图 G 只能是 v 上接出一些树所得到的图。事实上,如果这些树接在圈的其它任一顶点上,则图 G 必含有导出子图 G_{15} ,根据引理 1 和引理 5, $\lambda_2(G) > 1$,矛盾;其次,所接的树为长度不超过 2 的路,否则图 G 必含有导出子图 G_{16} 或 G_{17} ,根据引理 1 和引理 1 和引

另一方面,对于 $C_{r,s,t}(r \ge 2, s \ge 0, t \ge 0)$,对顶 点 v 应用引理 2,有

$$P(G;\lambda) = \lambda^{t-1}(\lambda^2 - 1)^{s+r-1}(\lambda^4 - (1+t+s+2r)\lambda^2 - 2\lambda r + t)$$

综上所述,若 G 为 Cactus,则 G 满足 $\lambda_2(G) \le 1$ 当且仅当图 G 为图 G 所示 $C_{r,s,t}(r \ge 0, s \ge 0, t \ge 0)$ 或 C_G 或 $G_i(i = 1, \dots, 13)$ 的连通导出子图。

进一步地,我们可以得到如下结果:

推论 1 设图 G 为 n 阶 Cactus, $n \ge 10$, 则 λ_2 (G) = 1 当且仅当 G 为 $C_{r,s,t}$, 其中 $s + r \ge 2$; λ_2 (G) < 1 当且仅当 G 为 $C_{0,1,n-3}$ 或 $C_{0,0,n-1}$ 或 $C_{1,0,n-3}$ 。

证 明 由于图 G 为 Cactus, 当 $n \ge 10$ 且 λ_2 (G) = 1 时,根据定理 7 及其证明知,G 为 $C_{r,s,\iota}$,其中 $2s+2r+t \ge 9$ 。若 G 为树,根据引理 $3,s \ge 2$;若 G 为单圈图,根据引理 $4,r=1,s \ge 1$;若 G 为双圈图,根据引理 $6,r=2,s \ge 0$;当 G 包含圈的个数大于等于 3 时,结论显然成立;另一方面,由计算知 $\lambda_2(C_{r,s,\iota})=1(s+r \ge 2)$ 。

而 $\lambda_2(G)$ <1 当且仅当 G 为 $C_{r,s,i}$,其中 s+r ≤ 1 。当 s+r=1 时,图 G 为 $C_{0,1,n-3}$ 或 $C_{1,0,n-3}$;当 s+r=0 时,图 G 为 $C_{0,0,n-1}$ 。另一方面,根据引理 3 和文献[4], $\lambda_2(C_{0,1,n-3})$ <1, $\lambda_2(C_{0,0,n-1})$ <1,

参考文献:

- [1] Cvetkovic D. On graphs whose second largest eigenvalue dose not exceed 1 [J]. Publ. Inst. Marh. (beogred), (N. S.) 1982,31(45):5-20.
- [2] Hong Y. Sharp lower bounds on the eigenvalue of trees[J]. Linear Algebra Appl, 1989, 113:101-105.
- [3] Shu J. L. On trees whose second largest eigenvalue dose not exceed 1[J]. OR Trans, 1998, 2(3):6-9.
- [4] Xu G. H. On unicyclic graphs whose second largest eigenvalue dose not exceed 1[J]. Discrete Appl Math, 2004,136;117 124.
- [5] Guo S. G. On bicyclic graphs whose second largest eigenvalue dose not exceed 1[J]. Linear Algebra Appl, 2005,407;201 –210.
- [6] 徐光辉, 邵嘉裕. 第二大根小于1的简单图[J]. 系统科学与数学, 2006, 26(1):121-128.
- [7] Stanic Z. On regular graphs and coronas whose second largest eigenvalue does not exceed 1[J]. Linear And Multilinear Algebra, 2010,58(5):545-554.
- [8] Stanic Z. On nested split graphs whose second largest eigenvalue is less than 1[J]. Linear Algebra Appl,2009;2 200 2 211.
- [9] Li S. C, Yang H X. On tricyclic graphs whose second largest eigenvalue dose not exceed 1 [J]. Linear Algebra Appl, 待发表.
- [10] Radosavljevic Z, Rasajski M. A class of reexive cactuses with four cycles [J]. Publ. Elektrotehn. Fak, Ser. Mat, 2003, 14:64-85.
- [11] Li S C, Zhang M J. On the signless Laplacian index of cacti with a given number of pendant vertices [J]. Linear Algebra Appl, 待发表.
- [12] Cvetkovic D, Doob M, Sachs H. Spectra of graphs [M]. New York: Acsdemic Press, 1980.

On Cactuses Whose Second Largest Eigenvalue Does Not Exceed 1

ZHANG Rong

(School of Mathematical Science, Yancheng Teachers University, Yancheng Jiangsu 224002, China)

Abstract: The second largest eigenvalue of a graph is closely related to its diameter, and the diameter is very important for a network. Therefore, it is of great practical value to study the second largest eigenvalue of graphs. Determining all the graphs whose second largest eigenvalue does not exceed one is a well – known unsolved problem in spectra of graphs. In recent years, researchers determined serious special simple graphs whose second largest eigenvalue does not exceed one. The connected simple graph G is a cactus if any two of its cycles have at most one common vertex. The cactuses whose second largest eigenvalue dose not exceed one have been determined by forbidding subgraph.

Keywords: cactus; eigenvalue; induced subgraph

(责任编辑:张英健)