doi:10.16018/j.cnki.cn32 - 1650/n.201704012

1,5 - 二芳基 - 3 - 吡唑烷酮衍生物的合成及晶体结构表征

贾红圣1,孙永丰2

(1. 苏州健雄职业技术学院 医药科技学院,江苏 太仓 215411;)

(2. 诺华(中国)生物医学研究有限公司,上海 浦东 201203

摘要:以取代肉桂酸甲酯与对甲氧基苯肼为原料,合成得到1,5-二芳基-3-吡唑烷酮衍生物,利用溶剂挥发法得到5-(3,4-二甲氧基苯基)-1- 对甲基苯基-3-吡唑烷酮化合物的单晶,对其进行元素分析、核磁表征和X-射线单晶衍射分析。晶体结构分析结果表明:该晶体为三斜晶系、P-1空间群,属于五元半椅式结构,晶胞参数为:a = 9.429(19)Å,b = 10.107(2)Å,c = 10.848(2)Å, $\alpha = 96.50(3)$ °, $\beta = 111.60(3)$ °, $\gamma = 114.43(3)$ °。

关键词:5-(3,4-二甲氧基苯基)-1- 对甲基苯基-3-吡唑烷酮;合成;晶体结构 中图分类号:0621.3:0741.6 文献标识码:A 文章编号:1671-5322(2017)04-0058-05

在杂环类化合物中,吡唑类化合物一般都有很 好的杀虫和杀螨活性且对环境友好而成为农药研 发人员研究的热门品种^[1-2]。在吡唑类农药中, 芳基在吡唑环上的取代位置通常出现在1位、3 位^[3],5-芳基吡唑类化合物文献报道的很少^[4]。 1-芳基吡唑类化合物大多以杀虫、杀螨为主,部 分有杀菌、除草活性^[5-6];3-芳基吡唑类化合物 以除草、杀菌为主;5-芳基吡唑类化合物主要用 于除稗草^[7]。本文将3种类型(①*X*=4-OCH₃,*Y* =4-CH₃;②X = 3,4-(OCH₃)₂, Y = 4-CH₃;③X = 3,4,5-(OCH₃)₃, Y = 4-CH₃)的甲氧基肉桂酸甲酯 与对甲基苯肼在甲醇钠的催化下反应得到1,5 – 二芳基 – 3 – 吡唑烷酮衍生物(A)^[8],合成路线如 图1所示,期望所得产物具有更好的生物活性,并 探索其作为高效农药的可能性。通过溶剂挥发法 得到其中一种化合物的晶体,X – 射线单晶衍射 分析结果显示:化合物两个分子通过 C—H…N 分 子间的氢键相连,使得晶体结构稳定性更好。

图 1 化合物(A)的合成路线 Fig. 1 Synthesis route for compound (A)

- 1 药品与仪器
- 1.1 药品

对甲基苯肼(自制),对甲氧基肉桂酸甲酯

(自制),3,4-二甲氧基肉桂酸甲酯(自制),3,4, 5-三甲氧基肉桂酸甲酯(自制),金属钠(AR), 无水甲醇(自制),冰醋酸(AR),正丁醇(AR),乙 醇胺(AR)。

作者简介:贾红圣(1978一),男,江苏泰州人,讲师,硕士,主要研究方向为应用有机合成。

收稿日期:2017-06-12

1.2 仪器

常用的标准接口玻璃仪器(苏州市东吴玻璃 仪器有限公司);电动搅拌器(上海梅颖浦仪器仪 表制造有限公司);JL - 500 系列电热器(江苏省 建湖县芦沟电热器厂);SHB - Ⅲ 循环水式真空 泵(巩义市予华仪器有限责任公司);WRS - 2A 数字熔点仪(上海圣科仪器设备有限公司); FJ270-60 红外光谱仪(天津天光光学仪器有限 公司);德国 Elementer 元素分析仪 Vario EL Ⅲ 型;300 MHz 核磁共振仪(Bruke 公司);CAD4 型 四圆衍射仪(荷兰 Enraf-Noniu 公司)。

2 实验步骤

(1)称取对甲基苯胺 22 g 于 500 mL 三口烧 瓶中,加入 100 mL 水和 50 mL 浓盐酸,搅拌溶解 后,冷却至 0 ℃,缓慢滴加含 14 g 亚硝酸钠的饱 和水溶液,反应 10 min(维持在 0 ℃)后,过滤得 到重氮化溶液;将冷却至 0 ℃的焦亚硫酸钠碱溶 液 120 g 缓慢滴加到重氮化溶液中,保持 pH = 7. 0~8.0,反应 30 min 后,加入 2N 盐酸调节 pH 至 中性,过滤,干燥得对甲基苯肼;

(2)取0.2 mol 对甲氧基肉桂酸于500 mL烘 干的三口烧瓶中,加入无水甲醇300 mL和0.5 g 对甲苯磺酸,加热回流反应1h后,回收甲醇,水 洗涤后,干燥得对甲氧基肉桂酸甲酯;同法可制得 3,4 - 二甲氧基肉桂酸甲酯和3,4,5 - 三甲氧基 肉桂酸甲酯;

(3)量取 45 mL 无水甲醇于 250 mL 烘干的 三口烧瓶中,分批快速加入 4.6 g 金属钠块,搅拌 5 min 后,蒸除甲醇,加入 20 mL 乙醇胺和 100 mL 正丁醇,搅拌后加入 0.15 mol 对甲氧基肉桂酸甲 酯,加热至回流,保温 30 min,用滴液漏斗分批加 入 6 g 对甲基苯肼,继续回流 3 h 后,冷却至室温, 用冰醋酸中和反应物,调节 pH = 6.0~7.0,放冰 箱冷藏过夜,析出固体,抽滤,用 95% 乙醇重结 晶^[8],得到 5 - (4 - 甲氧基苯基) - 1 - 对甲基苯 基 - 3 - 吡唑烷酮(A1)。同法可得 5 - (3,4 - 二 甲氧基苯基) - 1 - 对甲基苯基 - 3 - 吡唑烷酮 (A2)、5 - (3,4,5 - 三甲氧基苯基) - 1 - 对甲基 苯基 - 3 - 吡唑烷酮(A3)。

(4)取0.06g纯度为98.3%的A2溶于无水 乙醇中,用保鲜膜封住烧杯口,扎5~6个小孔,让 其缓慢挥发乙醇,两周后得到无色块状晶体,取部 分作 X-射线衍射测定。

3 结果与讨论

3.1 合成问题的讨论

取代肉桂酸酯和对甲基苯肼以正丁醇为溶 剂,甲醇钠为催化剂,发生缩合环化反应,生成1, 5-二芳基-3-吡唑烷酮。该反应对水十分敏 感,少量水的存在都能对反应产率产生很大影响, 甚至导致反应失败。因此用于反应的仪器应事先 干燥,制备甲醇钠的溶剂应为除水甲醇,其原因是 因为水的存在可能会使甲醇钠的量低于理论量, 从而导致最终产率比较低。合成得到的1,5-二 芳基-3-吡唑烷酮结果见表1。

表1 1,5-二芳基-3-吡唑烷酮的合成结果

Table 1	Synthesis	of 1,5	- diaryl - 1	3 – pyrazolidone
	•			

物质	产率/%	熔点/℃	外观
A1	55.2	97~99	粉红色固体
A2	51.6	142 ~145	粉红色固体
A3	50.5	98 ~ 100	粉红色固体

3.2 结构表征

3.2.1 元素分析

表2是产物的元素分析结果。通过对比产物 中C、H、N 三种元素含量的实际测得值与计算值, 发现两者基本相符。

表 2 1,5 – 二芳基 – 3 – 吡唑烷酮的元素分析结果 Table 2 Elemental analysis

		i courto o	,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	laiyi .	, pyraz	onuone	\mathcal{H}
枷臣		(2]	H	ľ	Ň
	初灰	实测值	计算值	实测值	计算值	实测值	计算值
	A1	72.19	72.32	6.52	6.43	10.05	9.92
	A2	69.36	69.21	6.31	6.45	8.86	8.97
	A3	77.39	77.52	7.74	7.53	9.45	9.52

3.2.2 红外光谱分析

A1、A2、A3 红外谱图的归属见表 3 所示。从 表 3 可以看出:3 180 cm⁻¹左右的峰为 N – H 伸缩 振动的吸收峰;1 690 cm⁻¹左右的尖峰为 C = O 伸 缩振动的强吸收峰;1 450 cm⁻¹、1 500 cm⁻¹、 1 600 cm⁻¹左右的尖峰为苯环骨架振动的吸收峰, 并以 1 500 cm⁻¹左右的吸收峰强度最大;1 330 cm⁻¹左右的尖峰为 C-N 伸缩振动的吸收峰;1 240 cm⁻¹左右的尖峰为甲氧基苯基上 C-O-C 不对称 伸缩振动的吸收峰。以上分析结果表明本文所合 成的化合物,其结构与预期的结构相符。

表 3 1,5 – 二芳基 – 3 – 吡唑烷酮的红外光谱归属 Table 3 Infrared spectrum assignment of						
1,5 – diaryl – 3 – pyrazolidone						
物质	IR/cm ⁻¹	归属				
	3 165	υ _{N-H}				
	3 061	$v_{\rm Ar-H}$				
	2 907,2 836	υ _{с-н}				
A1	1 695(s)	$v_{C=0}$				
	1 609,1 509,1 461	苯环				
	1 343	υ_{C-N}				
	1 249	$v_{as}(c-o-c)$				
	3 194	$\upsilon_{ m NH}$				
	3 062	$\upsilon_{\rm Ar-H}$				
	2 914,2 832	v_{c-H}				
A2	1 695(s)	$v_{C=0}$				
	1 609,1 511,1 463	苯环				
	1 323	v_{c-N}				
	1 247	$v_{as}(c-o-c)$				
	3 184	$\upsilon_{ m NH}$				
	3 068	$v_{\rm Ar-H}$				
	2 938,2 839	υ_{C-H}				
A3	1 694(s)	$v_{C=0}$				
	1 592,1 507,1 462	苯环				
	1 337	υ_{C-N}				
	1 236	$v_{as}(c-o-c)$				

3.2.3 核磁共振谱图分析

A1、A2、A3¹H-NMR 谱图归属见表 4, 吡唑环 呈半椅式结构。以 A1 为例: J_{be} = 16.68 Hz(J 在同 碳偶合的范围 12~18Hz 之内), H_b和 H_e 是连在同 一个 C 上的两个 H, 同时因为 $\delta_{He} > \delta_{Hb}$, 所以 H_b位 于 a 键, H_e位于 e 键; 五元环上邻 C 上 H 的偶合常 数是 $J_{trans} > J_{cis}$, J_{be} = 4.20 Hz, J_{ce} = 8.82 Hz, 所以 H_b与 H_e处于顺式, H_e 与 H_e处于反式。

3.2.4 晶体结构表征

3.2.4.1 衍射数据的收集及晶体结构测定

选取尺寸为 0.4 mm × 0.3 mm × 0.2 mm 的 单晶 A2,在 X – 射线面探衍射仪上,以石墨单色 器单色化的 MoKa 射线($\lambda = 0.71073$)为光源,以 $\omega/(2\theta)$ 方式扫描,在 298 K 温度下,收集 2.13° < θ < 25.99°的数据,经还原得到 3477个衍射点。其中 独立衍射点 3266个,吸收校正后 R(int) = 0.033, 三斜晶系,所属空间 P – 1,精修最后结果 S = 1.05, $R_1 = 0.076$, $wR_2 = 0.163$,最终残余电子密度的 最高峰为 0.536 e/A⁻³,最低谷为 – 0.764 e/A⁻³。

表 4 1,5 - 二芳基 - 3 - 吡唑烷酮的¹H-NMR 归属 Table 4 ¹H-NMR assignment of 1,5-diaryl-3-pyrazolidone

How EFC	<u> </u>			$^{1}H - NM$	IR	
初顶		δ	重数	H数	J∕Hz	归属
	f	2.30	s	3		a
	b c	2.50	q	1	4.20,16.68	b
	H H OCH ₃	3.20	q	1	8.82,16.68	с
A1		3.83	s	3		d
	H H	4.77	q	1	4.08,8.82	е
	h g CH ₃	6.91 - 7.39	m	8		f + g
	ล้	8.20	s	1		h
	e d	2.30	8	3		a
	b f OCH ₃	2.54	q	1	4.35,16.83	b
A2	H H OCH3	3.21	q	1	8.85,16.83	с
		3.89	s	6		d + e
	0 N N	4.76	q	1	4.30,8.95	f
	H i CH	6.86~7.10	m	7		g + h
	$h \sim a$	8.07	8	1		i
	d	2.23	8	3		а
	OCH ₃ e	2.54	Р	1	4.20,16.88	b
	b f OCH ₃	3.25	q	1	9.15,16.90	с
		3.86 ~ 3.87	d	9		d + e
A3	c^{H} N h	4.76	q	1	4.20,9.00	\mathbf{f}
		6.69	s	2		g
	j h CH ₃	6.96	d	2	8.55	h
	1 a	7.11	d	2	8.55	i
		8.15	s	1		i

A2的晶体结构见图2,晶胞堆积见图3,晶体 参数和结构参数见表5,原子坐标和等效各向同 性位移参数见表6,主要键长和键角见表7,氢键 数据见表8。

图 2 A2 单分子结构透视图

从图 2 可以看出: A2 的分子结构中, C3 ~ C8、C12 ~ C17 分别形成苯环, N1、N2、C9 ~ C11 形 成吡唑烷酮环, 吡唑烷酮环呈半椅式结构(面 N1 - C9-C11 与面 N1-N2-C10-C11 的二面角为 29.4°)。 O3-C10 的键长为 1.226Å, 为典型的 C = O 双键, 表 明吡唑烷酮环含有羰基。分子中存在分子内氢键 C5-H5A…N1 和 C17-H17A…N2, 如图 2 中虚线所示。由于分子内氢键的作用, 理论上 C5、C6、C9、N1 应趋向于共平面, N2、N1、C12、C17 也应趋向于共平面, 实际计算结果: 面 C5-C6-C9 与面 C6-C9-N1 的二面角为 5.8°, 面 N2-N1-C12 与面 N1-C12-C17 的二面角为 1.2°。理论分析与实际结果 相符。

表 5	化合物 A2 的晶体参数和结构参数
Table 5	5 Crystal parameters and structure

化合物分子式	$C_{18}H_{20}N_2O_3$
分子量	312.36
测试温度	298(2)K
波长	0.71073Å
晶系,空间群	Triclinic, P-1
	a = 9.429(19)Å
	$\alpha = 96.50(3)^{\circ}$
	b = 10.107(2)Å
于明多众	$\beta = 111.60(3)^{\circ}$
	c = 10.848(2) Å
	$\gamma = 114.43(3)^{\circ}$
晶胞体积	831.0(5)A ³
单晶密度	2
吸收系数	0.086 mm^{-1}
单胞内的电子数目	332
晶胞尺寸	$0.4 \times 0.3 \times 0.2 \text{ mm}$
数据收集的范围	2.13 to 25.99°
限制指数	-11 < =h < =10, -12 < =k < =12,
	0<=1<=15
收集衍射点数	3 477/3 266 R(int) = 0.033]
数据完整度	99.7%
吸收校正	Psi – scan
最大最小的透过率	0.936 5 and 0.953 1
精修方法	Full – matrix least – squares on F ²
数据数目/使用限制的数目/ 参数数目	3266/0/202
基于 F2 精修的吻合程度	1.049
可观察衍射的吻合因子	R1 = 0.076, wR2 = 0.163
所有数据的吻合因子	<i>R</i> 1 = 0. 106, wR2 = 0. 187
差值傅里叶图上的最大峰顶 和峰谷	0.536 and $-0.746~e{\rm \AA}^{-3}$

4 小结

(1)3-芳基-2-丙烯酸酯与芳基肼在甲醇 钠的作用下,反应生成1,5-二芳基-3-吡唑烷 酮,产率在50%以上。合成得到的产品A1、A2、 A3经元素分析、IR、¹H-NMR和X-Ray单晶衍射 表征,证明所合成的产品的结构与预期结构相符。

(2) A2 的单晶经 X-Ray 单晶衍射仪分析,结
果表明吡唑烷酮为五元半椅式结构,该晶体为三斜
晶系,P-1空间群,晶胞参数为:*a* = 9.429(19)Å, *b* = 10.107(2)Å,*c* = 10.848(2)Å,*α* = 96.50(3)°,
β = 111.60(3)°, γ = 114.43(3)°。

和等效各向同性位移参数	€6 化合物 A2 的原子坐	表 6
and equivalent isotropic	able 6 Atomic coordina	Table
rs of compound A2	displacement param	

Atom	x	у	z	U∕ eq
01	0.914 0(3)	0.769 8(3)	1.603 0(3)	0.082 3(10)
02	0.638 4(4)	0.759 1(3)	1.426 4(3)	0.062 2(7)
03	0.429 3(3)	0.129 6(3)	0.935 1(2)	0.0507(6)
N1	0.368 5(3)	0.0623(3)	1.224 9(3)	0.040 8(6)
N2	0.4294(4)	0.053 9(3)	1.1247(3)	0.044 3(6)
C1	1.071 8(7)	0.790 4(6)	1.686 1(6)	0.102
C2	0.489 9(6)	0.762 2(4)	1.326 1(4)	0.068 9(11)
C3	0.782 8(5)	0.626 0(4)	1.513 9(4)	0.052 0(9)
C4	0.7907(5)	0.492 5(4)	1.514 8(4)	0.0577(9)
C5	0.647 5(4)	0.351 8(4)	1.420 3(3)	0.047 1(8)
C6	0.499 8(4)	0.345 6(3)	1.324 4(3)	0.037 5(7)
C7	0.494 0(4)	0.481 9(3)	1.324 9(3)	0.041 1(7)
C8	0.632 2(4)	0.620 5(3)	1.417 5(3)	0.043 1(7)
С9	0.338 1(4)	0.197 4(3)	1.219 3(3)	0.0397(7)
C10	0.3897(4)	0.124 1(3)	1.030 9(3)	0.0397(7)
C11	0.295 0(4)	0.196 6(3)	1.068 2(3)	0.0427(7)
C12	0.212 9(4)	-0.076 9(3)	1.1967(3)	0.0391(7)
C13	0.1462(5)	-0.083 4(4)	1.2907(4)	0.053 9(9)
C14	0.001 3(5)	-0.215 6(4)	1.271 1(4)	0.0594(10)
C15	-0.078 8(4)	-0.3457(4)	1.158 6(4)	0.050 2(8)
C16	-0.011 1(5)	-0.337 3(4)	1.066 8(4)	0.050 2(8)
C17	0.134 9(4)	-0.205 1(4)	1.084 5(3)	0.044 1(8)
C18	-0.2397(5)	-0.488 0(4)	1.1361(5)	0.074 6(12)

表 7	化合物 A2 的主要键长和键角					
Table 7	The main bond length and bond					
	angle of compound A2					
<i>r</i> #-	http://	11, 22, 174	http://			

化学键	键长/Å	化学键	键角/(°)
01-C1	1.336(6)	C1-O1-C3	119.4(4)
O3-C10	1.226(4)	N2-N1-C12	113.3(2)
N1-N2	1.412(3)	N2-N1-C9	103.1(2)
N1-C9	1.511(4)	C6-C9-C11	112.0(2)
C13-C14	1.382(5)	O3-C10-N2	125.2(3)
C15-C18	1.508(5)	O3-C10-C11	127.6(3)

表 8 化合物 A2 的氢键

Table 8Hydrogen bonds for A2

D-H A	d(D-H)	$d(H\!\!\ldots\!A)$	$d(D\!\dots\!A)$	<(D-HA)
N2-H2A 03^{i}	0.8600	2.000 0	2.836(5)	163.00
C1-H1A $O3^{ii}$	0.9600	2.5700	3.472(6)	156.00
C5-H5A $N1^{iii}$	0.930 0	2.4900	2.846(5)	103.00
C13-H13A02	0.930 0	2.5200	3.452(5)	176.00
C17-H17AN2	0.930 0	2.430 0	2.755(5)	101.00

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x + 1, y + 1, z + 1

1(iii) - x + 1, -y + 1, -z + 3.

参考文献:

- [1] KRISHNAIAH A, NARSAIAH B. A Novel approach to the synthesis of 5-trifluoromethyl-3-substituted Pyrazoles [J]. Journal of Fluorine Chemistry, 2002, 115(1):9-11.
- [2] WUSTROW D J, CAPIRIS T, RUBIN R, et a. Pyrazole [1,5-a] pyrimidine CRF-1 receptor antagonists [J]. Bioorganic & Medicinal Chemistry Letters, 1998,8(16):2 067-2 070.
- [3] 朱万仁,胡培植,李美英,等.新型2,6-双(3,5-二取代吡唑基-1-羰基) 吡啶的合成[J].有机化学,2004,24 (3):346-349.
- [4] 田官荣,房立真,吴明根,等.稻田除草剂吡唑特的合成和除草效果[J].农药,2005,44(5):205-207.
- [5] 魏云亭,王银淑,李金山. 新杀螨剂 4-(4-特丁氧甲酰基苯甲氧氨甲基)-1,3-二甲基-5-(2-萘氧基) 吡唑的 合成[J]. 农药,1998,37(3):9-10.
- [6] 乔仁忠,张自义,赵玉芬.3-氨基-6/8 取代-1H-吡唑[4,3-c]喹啉类化合物的合成[J]. 高等学校化学学报, 2005,26(2):250-253.
- [7] 任雪玲,胡芳中,邹小毛,等. 吡唑联吡唑化合物库的液相平行合成[J]. 农药,2003,42(6):17-18.
- [8] 施红,宋光亮,马骥,等. 在线红外对1-苯基-5-(4-氟苯基)-3-羟基吡唑合成反应进程的研究[J]. 南京工业 大学学报(自然科学版),2005,27(3):29-31.
- [9] SHI H, ZHU H J, YIN P W, et al. 5-(4-Methoxyphenyl)-1-phenylpyrazolidin-3-one[J]. Acta Crystallographica Section E Structure Reports Online, 2005, 61(7): 2246-2247.
- [10] ZHU H J, WANG D D, MA J. 3-Hydroxy-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazole[J]. Acta Crystallographica Section E Structure Reports Online, 2004, 60(11): 2 144-2 146.