文章摘要
基于Hopfield神经网络数字系统测试技术研究
Study of Digital System Testing Technology Based on Hopfield Neural Network Models
  
DOI:10.3969/j.issn.1671-5322.2005.03.009
中文关键词: 神经网络模型  能量函数  数学优化算法  测试集优化  特征提取
英文关键词: neural network models  energy functions  optimization algorithm  test vector optimization  character distill
基金项目:
作者单位
陆广平 南京航空航天大学自动化学院江苏南京210016 
王友仁 南京航空航天大学自动化学院江苏南京210016 
摘要点击次数: 4275
全文下载次数: 3766
中文摘要:
      介绍了用离散Hopfield神经网络模型把组合电路约束网络转化为能量函数,用数学优化求能量函数的最小值,即为给定固定型故障的测试矢量.经检测故障覆盖率达到100%并通过试探法进一步优化测试矢量集,然后将测试矢量集的响应序列移入本原多项式求得特征序列,建立故障字典,实验证明该方法切实有效.
英文摘要:
      In the present research,the authors converted restricted networks of combinational circuits into energy functions with discrete Hopfield neural network models, used ptimization algorithm to obtain minimum of energy functions,the test vectors of stuck faults and found fault coverage is 100 percent.They optimized test vectors with putting out feelers, obtained character sequences of test vectors through shifting response sequences to fountain multinomial, and builded up a fault dictionary, whose validity stood up to experimental results.
查看全文   查看/发表评论  下载PDF阅读器
关闭