文章摘要
基于神经网络的泡沫混凝土强度及导热性能预测
Prediction of Foamed Concrete Compression Strength and Thermal Conductivity Based on BP Neural Network
投稿时间:2016-03-15  
DOI:10.16018/j.cnki.cn32-1650/n.201602011
中文关键词: BP神经网络  泡沫混凝土  抗压强度  导热性能  预测
英文关键词: BP neural network  foamed concrete  compression strength  thermal conductivity  prediction
基金项目:教育部博士点基金项目(20130205110014);陕西省自然科学基金项目(2014JM1005);陕西省住房和城乡建设厅项目(陕建科函[2015]19号)
作者单位
尹冠生 长安大学 理学院, 陕西 西安 710061 
傅沉 长安大学 理学院, 陕西 西安 710061 
贺燕飞 长安大学 理学院, 陕西 西安 710061 
摘要点击次数: 4791
全文下载次数: 3920
中文摘要:
      基于神经网络原理,建立预测泡沫混凝土性能的BP神经网络模型,期望通过输入配合比主要参数,得到泡沫混凝土强度及导热性能的预测结果。将实验数据分为训练组和对照组,对训练组进行非线性拟合,若拟合结果满足误差精度则模型建立完毕;通过拟合结果与对照组的比较,可验证模型预测精度。结果表明,BP神经网络模型能够准确拟合实验数据,利用其泛化能力进行预测的结果与对照组的误差小于8%,该模型具有很高的预测精度。
英文摘要:
      In this paper, BP neural network model is used to predict the compression strength and thermal conductivity of the foamed concrete. The experimental data were divided into training dataset and control dataset. On the training dataset, the proposed BP?neural?network?model was applied. The fitted model was obtained by tuning the parameters of mixing proportion with error rate controlled at pre-defined level. The prediction accuracy of the model was verified by comparing the results of the fitted model on the control dataset with true values. The results show that the predicted error rate is less than 8%, indicating that BP neural network is capable of predicting the experimental data accurately.
查看全文   查看/发表评论  下载PDF阅读器
关闭