|
基于有限元技术的工业机器人本体刚度优化设计 |
Stiffness Optimization Design of Industrial Robot Body Based on Finite Element Technology |
投稿时间:2020-04-10 |
DOI:10.16018/j.cnki.cn32-1650/n.202003004 |
中文关键词: 工业机器人 刚度优化 有限元 拓扑优化 |
英文关键词: industrial robot stiffness optimization finite element simulation topological optimization |
基金项目:国家重点研发计划资助(2019YFB1312200);安徽省科技重大专项(2019b05050005);芜湖市重点研发计划类科技项目(2018fy05)。 |
|
摘要点击次数: 3739 |
全文下载次数: 3155 |
中文摘要: |
采用有限元分析技术,对工业机器人整机进行有限元建模;基于有限元模型对整机和各零部件进行刚度贡献度分析,将分析结果和现有评价标准进行对比,识别待优化零部件;对待优化零部件采用结构拓扑优化技术进行优化,最终得出刚度合理的零部件及整机设计方案。通过对比优化前后的整机刚度综合系数和质量参数,可知本文所述方法能够在机器人设计阶段有效优化工业机器人的整机刚度和整体质量,使得机器人刚度设计更为合理。 |
英文摘要: |
The finite element modeling of the whole industrial robot was carried out by using the finite element analysis technology. Based on the finite element model, the stiffness contribution degree of the whole machine and each part was analyzed, and the analysis results were compared with the existing evaluation standards to identify the parts to be optimized. The structural topology optimization technology was used to optimize the parts to be optimized, and finally the design scheme of the parts and the whole machine with reasonable stiffness was obtained. By comparing the overall stiffness coefficients and quality parameters of the entire machine before and after optimization, it can be seen that the method described in this paper can effectively optimize the stiffness and overall quality of the industrial robot in the robot design stage, making the stiffness design of the robot more reasonable. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |