|
改进粒子群算法在光伏多峰值MPPT中的应用 |
PV array;partial shading;maximum power point tracking(MPPT);particle swarm optimization(PSO) |
|
DOI:10.16018/j.cnki.cn32-1650/n.202203012 |
中文关键词: 光伏阵列 局部遮阴 最大功率点跟踪 粒子群算法 |
英文关键词: PV array partial shading maximum power point tracking(MPPT) particle swarm optimization(PSO) |
基金项目: |
|
摘要点击次数: 94 |
全文下载次数: 165 |
中文摘要: |
光伏阵列在局部遮阴的情况下会呈现多峰值的特性,传统的最大功率点跟踪(MPPT)算法会陷入局部最优点,从而导致算法实效。粒子群算法较其他智能算法具有参数少、控制简单的优点,但存在收敛速度慢以及容易早熟收敛的缺点。针对这些问题,提出了改进的粒子群算法,将自适应的惯性权重法与异步变化的学习因子相结合来改善存在的问题。通过MATLAB将传统粒子群算法与改进的粒子群算法仿真对比来验证改进后算法的优越性。 |
英文摘要: |
Photovoltaic arrays will exhibit multi-peak characteristics under partial shading. The traditional maximum power point tracking (MPPT) algorithm will fall into the local optimum, which will cause the algorithm become invalid. Compared with other intelligent algorithms, the particle swarm optimization (PSO) has the advantages of fewer parameters and simple control, but it has the disadvantages of slow convergence and easy convergence early.In response to these problems, the article proposes an improved PSO which combines the adaptive inertia weight method with asynchronously changing learning factors to improve existing problems. Finally, the traditional particle swarm algorithm and the improved particle swarm algorithm are compared with MATLAB simulation to verify the superiority of the improved particle swarm algorithm. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |