文章摘要
最小Q-特征值第二小的给定悬挂点数的非二部单圈图
The Non-bipartite Unicyclic Graph with Fixed Number of Pendent Vertices Whose Least Q-eigenvalue Attains the Second Smallest
投稿时间:2015-05-20  
DOI:10.16018/j.cnki.cn32-1650/n.201504003最小Q-特征值第二小的给定悬挂点数的非二部单圈图
中文关键词: 非二部单圈图  悬挂点  最小特征值
英文关键词: Non-bipartite unicyclic graph  Pendant vertices  Least eigenvalue
基金项目:
作者单位
刘晓蓉 青海师范大学 数学系, 青海 西宁 810008
盐城师范学院 数学与统计学院, 江苏 盐城 224002 
张荣 盐城师范学院 数学与统计学院, 江苏 盐城 224002 
摘要点击次数: 6368
全文下载次数: 3789
中文摘要:
      图的最小Q-特征值常被用来衡量一个图的非二部程度受到研究者的广泛关注在路Pn-k-2的一端接出一个圈C3另一端接出k个悬挂边所得的n阶图记为Ukn(3)。范益政等人最近证明Ukn(3)是最小Q-特征值达到最小的图在他们的基础上证明C13(n-k-1)是最小Q-特征值达到第二小的图其中C13(n-k-1)是将Ukn(3)的一条悬挂边移至与悬挂邻点相邻的非悬挂点上所得的图
英文摘要:
      The least Q- eigenvalue of a graph is often used to measure non-bipartiteness of the graph, which is widely concerned by researchers. Let Ukn(3)be the graph of order n which is obtained by attaching a cycle C3 to an end vertex of a path Pn-k-2 and attaching k pendant edges to the other end vertex of the path Pn-k-2. Recently, Yi-Zheng Fan et al. proved that Ukn(3)was the unique graph whose least Q- eigenvalue attained the minimum among all graphs of order n with k pendant vertices. In this paper, we proved that C13(n-k-1) is the unique graph whose least Q- eigenvalue attains the second smallest value, where C13(n-k-1) is the graph obtained from Ukn(3)by relocating a pendant edge to the non-pendant vertex which is adjacent the pendant neighbor.
查看全文   查看/发表评论  下载PDF阅读器
关闭